Advertisement
introduction to operator theory: Introduction to Operator Theory Takashi Yoshino, 1993-12-05 An introductory exposition of the study of operator theory, presenting an interesting and rapid approach to some results which are not normally treated in an introductory source. The volume includes recent results and coverage of the current state of the field. |
introduction to operator theory: Introduction to Operator Theory I A. Brown, C. Pearcy, 2012-12-06 This book was written expressly to serve as a textbook for a one- or two-semester introductory graduate course in functional analysis. Its (soon to be published) companion volume, Operators on Hilbert Space, is in tended to be used as a textbook for a subsequent course in operator theory. In writing these books we have naturally been concerned with the level of preparation of the potential reader, and, roughly speaking, we suppose him to be familiar with the approximate equivalent of a one-semester course in each of the following areas: linear algebra, general topology, complex analysis, and measure theory. Experience has taught us, however, that such a sequence of courses inevitably fails to treat certain topics that are important in the study of functional analysis and operator theory. For example, tensor products are frequently not discussed in a first course in linear algebra. Likewise for the topics of convergence of nets and the Baire category theorem in a course in topology, and the connections between measure and topology in a course in measure theory. For this reason we have chosen to devote the first ten chapters of this volume (entitled Part I) to topics of a preliminary nature. In other words, Part I summarizes in considerable detail what a student should (and eventually must) know in order to study functional analysis and operator theory successfully. |
introduction to operator theory: Introduction to Operator Theory in Riesz Spaces Adriaan C. Zaanen, 2012-12-06 Since the beginning of the thirties a considerable number of books on func tional analysis has been published. Among the first ones were those by M. H. Stone on Hilbert spaces and by S. Banach on linear operators, both from 1932. The amount of material in the field of functional analysis (in cluding operator theory) has grown to such an extent that it has become impossible now to include all of it in one book. This holds even more for text books. Therefore, authors of textbooks usually restrict themselves to normed spaces (or even to Hilbert space exclusively) and linear operators in these spaces. In more advanced texts Banach algebras and (or) topological vector spaces are sometimes included. It is only rarely, however, that the notion of order (partial order) is explicitly mentioned (even in more advanced exposi tions), although order structures occur in a natural manner in many examples (spaces of real continuous functions or spaces of measurable function~). This situation is somewhat surprising since there exist important and illuminating results for partially ordered vector spaces, in . particular for the case that the space is lattice ordered. Lattice ordered vector spaces are called vector lattices or Riesz spaces. The first results go back to F. Riesz (1929 and 1936), L. Kan torovitch (1935) and H. Freudenthal (1936). |
introduction to operator theory: Introduction to Operator Space Theory Gilles Pisier, 2003-08-25 The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C*-algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of 'length' of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer. |
introduction to operator theory: Basic Operator Theory Israel Gohberg, Seymour Goldberg, 2013-12-01 rii application of linear operators on a Hilbert space. We begin with a chapter on the geometry of Hilbert space and then proceed to the spectral theory of compact self adjoint operators; operational calculus is next presented as a nat ural outgrowth of the spectral theory. The second part of the text concentrates on Banach spaces and linear operators acting on these spaces. It includes, for example, the three 'basic principles of linear analysis and the Riesz Fredholm theory of compact operators. Both parts contain plenty of applications. All chapters deal exclusively with linear problems, except for the last chapter which is an introduction to the theory of nonlinear operators. In addition to the standard topics in functional anal ysis, we have presented relatively recent results which appear, for example, in Chapter VII. In general, in writ ing this book, the authors were strongly influenced by re cent developments in operator theory which affected the choice of topics, proofs and exercises. One of the main features of this book is the large number of new exercises chosen to expand the reader's com prehension of the material, and to train him or her in the use of it. In the beginning portion of the book we offer a large selection of computational exercises; later, the proportion of exercises dealing with theoretical questions increases. We have, however, omitted exercises after Chap ters V, VII and XII due to the specialized nature of the subject matter. |
introduction to operator theory: Elements of Functional Analysis Arlen Brown, Carl M. Pearcy, 1977 |
introduction to operator theory: An Introduction to Models and Decompositions in Operator Theory Carlos S. Kubrusly, 2012-12-06 By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters. |
introduction to operator theory: Operator Theory for Electromagnetics George W. Hanson, Alexander B. Yakovlev, 2001-10-12 This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening. |
introduction to operator theory: Linear Operator Theory in Engineering and Science Arch W. Naylor, George R. Sell, 1982 This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook. |
introduction to operator theory: Elements of Operator Theory Carlos S. Kubrusly, 2013-03-14 {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter. |
introduction to operator theory: Introduction to Operator Theory I A. Brown, C. Pearcy, 2013-06-02 This book was written expressly to serve as a textbook for a one- or two-semester introductory graduate course in functional analysis. Its (soon to be published) companion volume, Operators on Hilbert Space, is in tended to be used as a textbook for a subsequent course in operator theory. In writing these books we have naturally been concerned with the level of preparation of the potential reader, and, roughly speaking, we suppose him to be familiar with the approximate equivalent of a one-semester course in each of the following areas: linear algebra, general topology, complex analysis, and measure theory. Experience has taught us, however, that such a sequence of courses inevitably fails to treat certain topics that are important in the study of functional analysis and operator theory. For example, tensor products are frequently not discussed in a first course in linear algebra. Likewise for the topics of convergence of nets and the Baire category theorem in a course in topology, and the connections between measure and topology in a course in measure theory. For this reason we have chosen to devote the first ten chapters of this volume (entitled Part I) to topics of a preliminary nature. In other words, Part I summarizes in considerable detail what a student should (and eventually must) know in order to study functional analysis and operator theory successfully. |
introduction to operator theory: Real Analysis Barry Simon, 2015-11-02 A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory. |
introduction to operator theory: Operator Theory Daniel Alpay, 2015-07-21 A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor. |
introduction to operator theory: A Course in Operator Theory John B. Conway, 2000 Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis. |
introduction to operator theory: Banach algebra techniques in operator theory R. G. Douglas, 1976 |
introduction to operator theory: Introduction to Linear Operator Theory Vasile I. Istratescu, 2020-08-14 This book is an introduction to the subject and is devoted to standard material on linear functional analysis, and presents some ergodic theorems for classes of operators containing the quasi-compact operators. It discusses various classes of operators connected with the numerical range. |
introduction to operator theory: Hardy Classes and Operator Theory Marvin Rosenblum, James Rovnyak, 1997-01-01 Concise treatment focuses on theory of shift operators, Toeplitz operators and Hardy classes of vector- and operator-valued functions. Topics include general theory of shift operators on a Hilbert space, use of lifting theorem to give a unified treatment of interpolation theorems of the Pick-Nevanlinna and Loewner types, more. Appendix. Bibliography. 1985 edition. |
introduction to operator theory: Perturbation theory for linear operators Tosio Kato, 2013-06-29 |
introduction to operator theory: C*-algebras and Operator Theory Gerard J. Murphy, 1990 This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required. |
introduction to operator theory: Operator Theoretic Aspects of Ergodic Theory Tanja Eisner, Bálint Farkas, Markus Haase, Rainer Nagel, 2015-11-18 Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory |
introduction to operator theory: Operator Theory, Operator Algebras, and Applications Deguang Han, Palle E. T. Jørgensen, David R. Larson, 2006 This book offers a presentation of some new trends in operator theory and operator algebras, with a view to their applications. It consists of separate papers written by some of the leading practitioners in the field. The content is put together by the three editors in a way that should help students and working mathematicians in other parts of the mathematical sciences gain insight into an important part of modern mathematics and its applications. While different specialist authors are outlining new results in this book, the presentations have been made user friendly with the aid of tutorial material. In fact, each paper contains three things: a friendly introduction with motivation, tutorial material, and new research. The authors have strived to make their results relevant to the rest of mathematics. A list of topics discussed in the book includes wavelets, frames and their applications, quantum dynamics, multivariable operator theory, $C*$-algebras, and von Neumann algebras. Some longer papers present recent advances on particular, long-standing problems such as extensions and dilations, the Kadison-Singer conjecture, and diagonals of self-adjoint operators. |
introduction to operator theory: Fundamentals of the Theory of Operator Algebras. Volume III Richard V. Kadison, John R. Ringrose, 1998-01-13 This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the classical theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory. |
introduction to operator theory: Introduction to Operator Theory and Invariant Subspaces B. Beauzamy, 1988-10-01 This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given.Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples.In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions. |
introduction to operator theory: Introduction to Vertex Operator Algebras and Their Representations James Lepowsky, Haisheng Li, 2012-12-06 * Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics. |
introduction to operator theory: Banach Algebra Techniques in the Theory of Toeplitz Operators Ronald G. Douglas, 1980 |
introduction to operator theory: Operator Theory, Operator Algebras, and Matrix Theory Carlos André, M. Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, Ion Zaballa, 2018-08-22 This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas. |
introduction to operator theory: Introduction to Spectral Theory P.D. Hislop, I.M. Sigal, 2012-12-06 The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace. |
introduction to operator theory: An Introduction to Operator Algebras Kehe Zhu, 1993-05-27 An Introduction to Operator Algebras is a concise text/reference that focuses on the fundamental results in operator algebras. Results discussed include Gelfand's representation of commutative C*-algebras, the GNS construction, the spectral theorem, polar decomposition, von Neumann's double commutant theorem, Kaplansky's density theorem, the (continuous, Borel, and L8) functional calculus for normal operators, and type decomposition for von Neumann algebras. Exercises are provided after each chapter. |
introduction to operator theory: Noncommutative Function-Theoretic Operator Theory and Applications Joseph A. Ball, Vladimir Bolotnikov, 2021-12-16 This concise monograph explores how core ideas in Hardy space function theory and operator theory continue to be useful and informative in new settings, leading to new insights for noncommutative multivariable operator theory. Beginning with a review of the confluence of system theory ideas and reproducing kernel techniques, the book then covers representations of backward-shift-invariant subspaces in the Hardy space as ranges of observability operators, and representations for forward-shift-invariant subspaces via a Beurling–Lax representer equal to the transfer function of the linear system. This pair of backward-shift-invariant and forward-shift-invariant subspace form a generalized orthogonal decomposition of the ambient Hardy space. All this leads to the de Branges–Rovnyak model theory and characteristic operator function for a Hilbert space contraction operator. The chapters that follow generalize the system theory and reproducing kernel techniques to enable an extension of the ideas above to weighted Bergman space multivariable settings. |
introduction to operator theory: Operator Algebras Bruce Blackadar, 2006-03-09 This volume attempts to give a comprehensive discussion of the theory of operator algebras (C*-algebras and von Neumann algebras. ) The volume is intended to serve two purposes: to record the standard theory in the Encyc- pedia of Mathematics, and to serve as an introduction and standard reference for the specialized volumes in the series on current research topics in the subject. Since there are already numerous excellent treatises on various aspects of thesubject,howdoesthisvolumemakeasigni?cantadditiontotheliterature, and how does it di?er from the other books in the subject? In short, why another book on operator algebras? The answer lies partly in the ?rst paragraph above. More importantly, no other single reference covers all or even almost all of the material in this volume. I have tried to cover all of the main aspects of “standard” or “clas- cal” operator algebra theory; the goal has been to be, well, encyclopedic. Of course, in a subject as vast as this one, authors must make highly subjective judgments as to what to include and what to omit, as well as what level of detail to include, and I have been guided as much by my own interests and prejudices as by the needs of the authors of the more specialized volumes. |
introduction to operator theory: Theory of Operator Algebras I Masamichi Takesaki, 2011-11-05 Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians. |
introduction to operator theory: An Introduction to Local Spectral Theory K. B. Laursen, Michael Neumann, 2000 Modern local spectral theory is built on the classical spectral theorem, a fundamental result in single-operator theory and Hilbert spaces. This book provides an in-depth introduction to the natural expansion of this fascinating topic of Banach space operator theory, whose pioneers include Dunford, Bishop, Foias, and others. Assuming only modest prerequisites of its readership, it gives complete coverage of the field, including the fundamental recent work by Albrecht and Eschmeier which provides the full duality theory for Banach space operators. It is highlighted by many characterizations of decomposable operators, and of other related, important classes of operators, as well as an in-depth study of their spectral properties, including identifications of distinguished parts, and results on permanence properties of spectra with respect to several types of similarity. Also found is a thorough and quite elementary treatment of the modern single- operator duality theory; this theory has many applications, both to general issues of classification and to such celebrated problems as the invariant subspace problems. A long chapter - almost a book in itself - is devoted to the use of local spectral theory in the study of spectral properties of multipliers and convolution operators. Another one describes its connections to automatic continuity theory. Written in a careful and detailed style, it contains numerous examples, many simplified proofs of classical results, and extensive references. It concludes with a list of interesting open problems, suitable for continued research. |
introduction to operator theory: State Spaces of Operator Algebras Erik M. Alfsen, Frederik W. Shultz, 2001-04-27 The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book. |
introduction to operator theory: Introduction to operator theory Arlen Brown, Carl Pearcy, 1977 |
introduction to operator theory: Operator Theory Barry Simon, 2015-12-04 A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of unbounded self-adjoint operators. There is also an introduction to the theory of orthogonal polynomials and a long chapter on Banach algebras, including the commutative and non-commutative Gel'fand-Naimark theorems and Fourier analysis on general locally compact abelian groups. |
introduction to operator theory: An Indefinite Excursion in Operator Theory Aurelian Gheondea, 2022-07-28 Presents a modern, readable introduction to spaces with indefinite inner product and their operator theory. |
introduction to operator theory: An Introduction to Operators on the Hardy-Hilbert Space Ruben A. Martinez-Avendano, Peter Rosenthal, 2007 The subject of this book is operator theory on the Hardy space H2, also called the Hardy-Hilbert space. This is a popular area, partially because the Hardy-Hilbert space is the most natural setting for operator theory. A reader who masters the material covered in this book will have acquired a firm foundation for the study of all spaces of analytic functions and of operators on them. The goal is to provide an elementary and engaging introduction to this subject that will be readable by everyone who has understood introductory courses in complex analysis and in functional analysis. The exposition, blending techniques from soft and hard analysis, is intended to be as clear and instructive as possible. Many of the proofs are very elegant. This book evolved from a graduate course that was taught at the University of Toronto. It should prove suitable as a textbook for beginning graduate students, or even for well-prepared advanced undergraduates, as well as for independent study. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering. |
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.
How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …
INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.
What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …
Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.
How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …
INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.
What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …
Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …