Advertisement
introduction to genetic algorithms sivanandam: Introduction to Genetic Algorithms S.N. Sivanandam, S. N. Deepa, 2007-10-24 Theoriginofevolutionaryalgorithmswasanattempttomimicsomeoftheprocesses taking place in natural evolution. Although the details of biological evolution are not completely understood (even nowadays), there exist some points supported by strong experimental evidence: • Evolution is a process operating over chromosomes rather than over organisms. The former are organic tools encoding the structure of a living being, i.e., a cr- ture is “built” decoding a set of chromosomes. • Natural selection is the mechanism that relates chromosomes with the ef ciency of the entity they represent, thus allowing that ef cient organism which is we- adapted to the environment to reproduce more often than those which are not. • The evolutionary process takes place during the reproduction stage. There exists a large number of reproductive mechanisms in Nature. Most common ones are mutation (that causes the chromosomes of offspring to be different to those of the parents) and recombination (that combines the chromosomes of the parents to produce the offspring). Based upon the features above, the three mentioned models of evolutionary c- puting were independently (and almost simultaneously) developed. |
introduction to genetic algorithms sivanandam: Introduction to Evolutionary Algorithms Xinjie Yu, Mitsuo Gen, 2010-06-10 Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline. |
introduction to genetic algorithms sivanandam: PRINCIPLES OF SOFT COMPUTING (With CD ) S.N.Sivanandam & S.N.Deepa, 2007-06 Market_Desc: · B. Tech (UG) students of CSE, IT, ECE· College Libraries· Research Scholars· Operational Research· Management Sector Special Features: Dr. S. N. Sivanandam has published 12 books· He has delivered around 150 special lectures of different specialization in Summer/Winter school and also in various Engineering colleges· He has guided and co guided 30 PhD research works and at present 9 PhD research scholars are working under him· The total number of technical publications in International/National Journals/Conferences is around 700· He has also received Certificate of Merit 2005-2006 for his paper from The Institution of Engineers (India)· He has chaired 7 International Conferences and 30 National Conferences. He is a member of various professional bodies like IE (India), ISTE, CSI, ACS and SSI. He is a technical advisor for various reputed industries and engineering institutions· His research areas include Modeling and Simulation, Neural Networks, Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multidimensional system analysis, Linear and Nonlinear control system, Signal and Image processing, Control System, Power system, Numerical methods, Parallel Computing, Data Mining and Database Security About The Book: This book is meant for a wide range of readers who wish to learn the basic concepts of soft computing. It can also be helpful for programmers, researchers and management experts who use soft computing techniques. The basic concepts of soft computing are dealt in detail with the relevant information and knowledge available for understanding the computing process. The various neural network concepts are explained with examples, highlighting the difference between various architectures. Fuzzy logic techniques have been clearly dealt with suitable examples. Genetic algorithm operators and the various classifications have been discussed in lucid manner, so that a beginner can understand the concepts with minimal effort. |
introduction to genetic algorithms sivanandam: Introduction to Neural Networks Using Matlab 6.0 S. N. Sivanandam, S. N. Deepa, 2006 |
introduction to genetic algorithms sivanandam: Deterministic Artificial Intelligence Timothy Sands, 2020-05-27 Kirchhoff’s laws give a mathematical description of electromechanics. Similarly, translational motion mechanics obey Newton’s laws, while rotational motion mechanics comply with Euler’s moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research culminating here with a text on the ability to make rigid bodies in rotation become self-aware, and even learn. This book is meant for basic scientifically inclined readers commencing with a first chapter on the basics of stochastic artificial intelligence to bridge readers to very advanced topics of deterministic artificial intelligence, espoused in the book with applications to both electromechanics (e.g. the forced van der Pol equation) and also motion mechanics (i.e. Euler’s moment equations). The reader will learn how to bestow self-awareness and express optimal learning methods for the self-aware object (e.g. robot) that require no tuning and no interaction with humans for autonomous operation. The topics learned from reading this text will prepare students and faculty to investigate interesting problems of mechanics. It is the fondest hope of the editor and authors that readers enjoy the book. |
introduction to genetic algorithms sivanandam: Computational Analysis and Deep Learning for Medical Care Amit Kumar Tyagi, 2021-08-24 The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture. |
introduction to genetic algorithms sivanandam: Search Methodologies Edmund K. Burke, Graham Kendall, 2013-10-18 The first edition of Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques was originally put together to offer a basic introduction to the various search and optimization techniques that students might need to use during their research, and this new edition continues this tradition. Search Methodologies has been expanded and brought completely up to date, including new chapters covering scatter search, GRASP, and very large neighborhood search. The chapter authors are drawn from across Computer Science and Operations Research and include some of the world’s leading authorities in their field. The book provides useful guidelines for implementing the methods and frameworks described and offers valuable tutorials to students and researchers in the field. “As I embarked on the pleasant journey of reading through the chapters of this book, I became convinced that this is one of the best sources of introductory material on the search methodologies topic to be found. The book’s subtitle, “Introductory Tutorials in Optimization and Decision Support Techniques”, aptly describes its aim, and the editors and contributors to this volume have achieved this aim with remarkable success. The chapters in this book are exemplary in giving useful guidelines for implementing the methods and frameworks described.” Fred Glover, Leeds School of Business, University of Colorado Boulder, USA “[The book] aims to present a series of well written tutorials by the leading experts in their fields. Moreover, it does this by covering practically the whole possible range of topics in the discipline. It enables students and practitioners to study and appreciate the beauty and the power of some of the computational search techniques that are able to effectively navigate through search spaces that are sometimes inconceivably large. I am convinced that this second edition will build on the success of the first edition and that it will prove to be just as popular.” Jacek Blazewicz, Institute of Computing Science, Poznan University of Technology and Institute of Bioorganic Chemistry, Polish Academy of Sciences |
introduction to genetic algorithms sivanandam: Evolutionary Computation David B. Fogel, 2006-01-03 This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook. |
introduction to genetic algorithms sivanandam: ICCCE 2020 Amit Kumar, Stefan Mozar, 2021-10-26 This book is a collection of research papers and articles presented at the 3rd International Conference on Communications and Cyber-Physical Engineering (ICCCE 2020), held on 1-2 February 2020 at CMR Engineering College, Hyderabad, Telangana, India. Discussing the latest developments in voice and data communication engineering, cyber-physical systems, network science, communication software, image and multimedia processing research and applications, as well as communication technologies and other related technologies, it includes contributions from both academia and industry. This book is a valuable resource for scientists, research scholars and PG students working to formulate their research ideas and find the future directions in these areas. Further, it may serve as a reference work to understand the latest engineering and technologies used by practicing engineers in the field of communication engineering. |
introduction to genetic algorithms sivanandam: Genetic Algorithms , 2024-01-17 In this edition of Genetic Algorithms - Theory, Design and Programming, we present a series of scientific contributions that delve into the intricate theoretical foundations and practical nuances of genetic algorithms (GAs). Beyond the academic realm, GAs have demonstrated profound applications in societal decision-making and engineering optimization, showcased through real-world examples and case studies. A dedicated section on programming principles offers a thorough guide for implementing GAs across diverse languages. This edition, tailored for researchers and academics, serves as a testament to the scientific advancements within the field, inviting readers to explore the nuanced journey from theoretical constructs to pragmatic applications in the dynamic landscape of GAs. |
introduction to genetic algorithms sivanandam: Clever Algorithms Jason Brownlee, 2011 This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language. |
introduction to genetic algorithms sivanandam: Emerging Trends in Mechatronics Aydin Azizi, 2020-01-15 Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems. |
introduction to genetic algorithms sivanandam: Computer and Information Sciences Erol Gelenbe, Ricardo Lent, Georgia Sakellari, Ahmet Sacan, Hakki Toroslu, Adnan Yazici, 2010-09-20 Computer and Information Sciences is a unique and comprehensive review of advanced technology and research in the field of Information Technology. It provides an up to date snapshot of research in Europe and the Far East (Hong Kong, Japan and China) in the most active areas of information technology, including Computer Vision, Data Engineering, Web Engineering, Internet Technologies, Bio-Informatics and System Performance Evaluation Methodologies. |
introduction to genetic algorithms sivanandam: Machine Learning for Model Order Reduction Khaled Salah Mohamed, 2018 This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis. Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction; Describes new, hybrid solutions for model order reduction; Presents machine learning algorithms in depth, but simply; Uses real, industrial applications to verify algorithms. |
introduction to genetic algorithms sivanandam: An Introduction to Design Science Paul Johannesson, Erik Perjons, 2014-10-09 This book is an introductory text on design science, intended to support both graduate students and researchers in structuring, undertaking and presenting design science work. It builds on established design science methods as well as recent work on presenting design science studies and ethical principles for design science, and also offers novel instruments for visualizing the results, both in the form of process diagrams and through a canvas format. While the book does not presume any prior knowledge of design science, it provides readers with a thorough understanding of the subject and enables them to delve into much deeper detail, thanks to extensive sections on further reading. Design science in information systems and technology aims to create novel artifacts in the form of models, methods, and systems that support people in developing, using and maintaining IT solutions. This work focuses on design science as applied to information systems and technology, but it also includes examples from, and perspectives of, other fields of human practice. Chapter 1 provides an overview of design science and outlines its ties with empirical research. Chapter 2 discusses the various types and forms of knowledge that can be used and produced by design science research, while Chapter 3 presents a brief overview of common empirical research strategies and methods. Chapter 4 introduces a methodological framework for supporting researchers in doing design science research as well as in presenting their results. This framework includes five core activities, which are described in detail in Chapters 5 to 9. Chapter 10 discusses how to communicate design science results, while Chapter 11 compares the proposed methodological framework with methods for systems development and shows how they can be combined. Chapter 12 discusses how design science relates to research paradigms, in particular to positivism and interpretivism. Lastly, Chapter 13 discusses ethical issues and principles for design science research. |
introduction to genetic algorithms sivanandam: Moments and Moment Invariants in Pattern Recognition Jan Flusser, Barbara Zitova, Tomas Suk, 2009-11-04 Moments as projections of an image’s intensity onto a proper polynomial basis can be applied to many different aspects of image processing. These include invariant pattern recognition, image normalization, image registration, focus/ defocus measurement, and watermarking. This book presents a survey of both recent and traditional image analysis and pattern recognition methods, based on image moments, and offers new concepts of invariants to linear filtering and implicit invariants. In addition to the theory, attention is paid to efficient algorithms for moment computation in a discrete domain, and to computational aspects of orthogonal moments. The authors also illustrate the theory through practical examples, demonstrating moment invariants in real applications across computer vision, remote sensing and medical imaging. Key features: Presents a systematic review of the basic definitions and properties of moments covering geometric moments and complex moments. Considers invariants to traditional transforms – translation, rotation, scaling, and affine transform - from a new point of view, which offers new possibilities of designing optimal sets of invariants. Reviews and extends a recent field of invariants with respect to convolution/blurring. Introduces implicit moment invariants as a tool for recognizing elastically deformed objects. Compares various classes of orthogonal moments (Legendre, Zernike, Fourier-Mellin, Chebyshev, among others) and demonstrates their application to image reconstruction from moments. Offers comprehensive advice on the construction of various invariants illustrated with practical examples. Includes an accompanying website providing efficient numerical algorithms for moment computation and for constructing invariants of various kinds, with about 250 slides suitable for a graduate university course. Moments and Moment Invariants in Pattern Recognition is ideal for researchers and engineers involved in pattern recognition in medical imaging, remote sensing, robotics and computer vision. Post graduate students in image processing and pattern recognition will also find the book of interest. |
introduction to genetic algorithms sivanandam: Introduction to Data Mining and Its Applications S. Sumathi, S.N. Sivanandam, 2006-09-26 This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in data base systems and new data base applications and is also designed to give a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, AI, machine learning, NN, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization. This book is intended for a wide audience of readers who are not necessarily experts in data warehousing and data mining, but are interested in receiving a general introduction to these areas and their many practical applications. Since data mining technology has become a hot topic not only among academic students but also for decision makers, it provides valuable hidden business and scientific intelligence from a large amount of historical data. It is also written for technical managers and executives as well as for technologists interested in learning about data mining. |
introduction to genetic algorithms sivanandam: Advances in Decision Sciences, Image Processing, Security and Computer Vision Suresh Chandra Satapathy, K. Srujan Raju, K. Shyamala, D. Rama Krishna, Margarita N. Favorskaya, 2020-08-14 This book constitutes the proceedings of the First International Conference on Emerging Trends in Engineering (ICETE), held at University College of Engineering and organised by the Alumni Association, University College of Engineering, Osmania University, in Hyderabad, India on 22–23 March 2019. The proceedings of the ICETE are published in three volumes, covering seven areas: Biomedical, Civil, Computer Science, Electrical & Electronics, Electronics & Communication, Mechanical, and Mining Engineering. The 215 peer-reviewed papers from around the globe present the latest state-of-the-art research, and are useful to postgraduate students, researchers, academics and industry engineers working in the respective fields. Volume 1 presents papers on the theme “Advances in Decision Sciences, Image Processing, Security and Computer Vision – International Conference on Emerging Trends in Engineering (ICETE)”. It includes state-of-the-art technical contributions in the area of biomedical and computer science engineering, discussing sustainable developments in the field, such as instrumentation and innovation, signal and image processing, Internet of Things, cryptography and network security, data mining and machine learning. |
introduction to genetic algorithms sivanandam: Artificial Intelligence Illuminated Ben Coppin, 2004 |
introduction to genetic algorithms sivanandam: Soft Computing Samir Roy, Udit Chakraborty, 2013 Soft computing is a branch of computer science that deals with a family of methods that imitate human intelligence. This is done with the goal of creating tools that will contain some human-like capabilities (such as learning, reasoning and decision-making). This book covers the entire gamut of soft computing, including fuzzy logic, rough sets, artificial neural networks, and various evolutionary algorithms. It offers a learner-centric approach where each new concept is introduced with carefully designed examples/instances to train the learner. |
introduction to genetic algorithms sivanandam: Computer Security and Cryptography Alan G. Konheim, 2007-03-07 Gain the skills and knowledge needed to create effective data security systems This book updates readers with all the tools, techniques, and concepts needed to understand and implement data security systems. It presents a wide range of topics for a thorough understanding of the factors that affect the efficiency of secrecy, authentication, and digital signature schema. Most importantly, readers gain hands-on experience in cryptanalysis and learn how to create effective cryptographic systems. The author contributed to the design and analysis of the Data Encryption Standard (DES), a widely used symmetric-key encryption algorithm. His recommendations are based on firsthand experience of what does and does not work. Thorough in its coverage, the book starts with a discussion of the history of cryptography, including a description of the basic encryption systems and many of the cipher systems used in the twentieth century. The author then discusses the theory of symmetric- and public-key cryptography. Readers not only discover what cryptography can do to protect sensitive data, but also learn the practical limitations of the technology. The book ends with two chapters that explore a wide range of cryptography applications. Three basic types of chapters are featured to facilitate learning: Chapters that develop technical skills Chapters that describe a cryptosystem and present a method of analysis Chapters that describe a cryptosystem, present a method of analysis, and provide problems to test your grasp of the material and your ability to implement practical solutions With consumers becoming increasingly wary of identity theft and companies struggling to develop safe, secure systems, this book is essential reading for professionals in e-commerce and information technology. Written by a professor who teaches cryptography, it is also ideal for students. |
introduction to genetic algorithms sivanandam: The Logic of Logistics David Simchi-Levi, Xin Chen, Julien Bramel, 2007-07-03 Fierce competition in today's global market provides a powerful motivation for developing ever more sophisticated logistics systems. This book, written for the logistics manager and researcher, presents a survey of the modern theory and application of logistics. The goal of the book is to present the state-of-the-art in the science of logistics management. As a result, the authors have written a timely and authoritative survey of this field that many practitioners and researchers will find makes an invaluable companion to their work. |
introduction to genetic algorithms sivanandam: Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021) Harish Sharma, Vijay Kumar Vyas, Rajesh Kumar Pandey, Mukesh Prasad, 2022-03-23 This book gathers outstanding research papers presented at the International Conference on Intelligent Vision and Computing (ICIVC 2021), held online during October 03–04, 2021. ICIVC 2021 is organised by Sur University, Oman. The book presents novel contributions in intelligent vision and computing and serves as reference material for beginners and advanced research. The topics covered are intelligent systems, intelligent data analytics and computing, intelligent vision and applications collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal natural language processing. |
introduction to genetic algorithms sivanandam: Genetic Algorithms in Java Basics Lee Jacobson, Burak Kanber, 2015-11-28 Genetic Algorithms in Java Basics is a brief introduction to solving problems using genetic algorithms, with working projects and solutions written in the Java programming language. This brief book will guide you step-by-step through various implementations of genetic algorithms and some of their common applications, with the aim to give you a practical understanding allowing you to solve your own unique, individual problems. After reading this book you will be comfortable with the language specific issues and concepts involved with genetic algorithms and you'll have everything you need to start building your own. Genetic algorithms are frequently used to solve highly complex real world problems and with this book you too can harness their problem solving capabilities. Understanding how to utilize and implement genetic algorithms is an essential tool in any respected software developers toolkit. So step into this intriguing topic and learn how you too can improve your software with genetic algorithms, and see real Java code at work which you can develop further for your own projects and research. Guides you through the theory behind genetic algorithms Explains how genetic algorithms can be used for software developers trying to solve a range of problems Provides a step-by-step guide to implementing genetic algorithms in Java |
introduction to genetic algorithms sivanandam: Parallel Genetic Algorithms Gabriel Luque, Enrique Alba, 2011-06-15 This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs. |
introduction to genetic algorithms sivanandam: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 Manuel Graña, José Manuel López-Guede, Oier Etxaniz, Álvaro Herrero, Héctor Quintián, Emilio Corchado, 2016-10-01 This volume of Advances in Intelligent and Soft Computing contains accepted papers presented at SOCO 2016, CISIS 2016 and ICEUTE 2016, all conferences held in the beautiful and historic city of San Sebastián (Spain), in October 2016. Soft computing represents a collection or set of computational techniques in machine learning, computer science and some engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. After a through peer-review process, the 11th SOCO 2016 International Program Committee selected 45 papers. In this relevant edition a special emphasis was put on the organization of special sessions. Two special session was organized related to relevant topics as: Optimization, Modeling and Control Systems by Soft Computing and Soft Computing Methods in Manufacturing and Management Systems. The aim of the 9th CISIS 2016 conference is to offer a meeting opportunity for academic and industry-related researchers belonging to the various, vast communities of Computational Intelligence, Information Security, and Data Mining. The need for intelligent, flexible behaviour by large, complex systems, especially in mission-critical domains, is intended to be the catalyst and the aggregation stimulus for the overall event. After a through peer-review process, the CISIS 2016 International Program Committee selected 20 papers. In the case of 7th ICEUTE 2016, the International Program Committee selected 14 papers. |
introduction to genetic algorithms sivanandam: Hydraulics of Stepped Spillways H.-E. Minor, W.H. Hager, 2020-08-13 This book provides a discussion of the latest research pertaining to the hydraulic design of spilways and to hydraulic engineering in general. It comprises the papers of a workshop organized to bring together engineers and scientists from around the world for the exchange of ideas on water flow over stepped spillways. This workshop covered a range of subjects from two-phase flow characteristics to refurbishment and implementation of spillways in existing dam structures, and the book also includes a number of illustrative case studies. Overall, this book is one of the first in the rapidly growing field of modern hydraulic engineering techniques. It will interest designers, scientists, and graduate students and researchers in the fields of hydraulic, civil and environmental engineering. |
introduction to genetic algorithms sivanandam: Applications of Intelligent Systems N. Petkov, N. Strisciuglio, C.M. Travieso-González, 2018-12-21 The deployment of intelligent systems to tackle complex processes is now commonplace in many fields from medicine and agriculture to industry and tourism. This book presents scientific contributions from the 1st International Conference on Applications of Intelligent Systems (APPIS 2018) held at the Museo Elder in Las Palmas de Gran Canaria, Spain, from 10 to 12 January 2018. The aim of APPIS 2018 was to bring together scientists working on the development of intelligent computer systems and methods for machine learning, artificial intelligence, pattern recognition, and related techniques with an emphasis on their application to various problems. The 34 peer-reviewed papers included here cover an extraordinarily wide variety of topics – everything from semi-supervised learning to matching electro-chemical sensor information with human odor perception – but what they all have in common is the design and application of intelligent systems and their role in tackling diverse and complex challenges. The book will be of particular interest to all those involved in the development and application of intelligent systems. |
introduction to genetic algorithms sivanandam: Swarm, Evolutionary, and Memetic Computing Bijaya Ketan Panigrahi, Ponnuthurai Nagaratnam Suganthan, Swagatam Das, Suresh Chandra Satapathy, 2011-12-07 Annotation This volume constitutes the refereed proceedings of the Second International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2011, held in Visakhapatnam, India, in December 2011. The 124 revised full papers presented in both volumes were carefully reviewed and selected from 422 submissions. |
introduction to genetic algorithms sivanandam: Black Box Optimization, Machine Learning, and No-Free Lunch Theorems Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis, 2021-05-27 This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem. |
introduction to genetic algorithms sivanandam: Evaluation of Text Summaries Based on Linear Optimization of Content Metrics Jonathan Rojas-Simon, Yulia Ledeneva, Rene Arnulfo Garcia-Hernandez, 2022-08-18 This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth. |
introduction to genetic algorithms sivanandam: Pattern Recognition, Machine Intelligence and Biometrics Patrick S. P. Wang, 2012-02-13 Pattern Recognition, Machine Intelligence and Biometrics covers the most recent developments in Pattern Recognition and its applications, using artificial intelligence technologies within an increasingly critical field. It covers topics such as: image analysis and fingerprint recognition; facial expressions and emotions; handwriting and signatures; iris recognition; hand-palm gestures; and multimodal based research. The applications span many fields, from engineering, scientific studies and experiments, to biomedical and diagnostic applications, to personal identification and homeland security. In addition, computer modeling and simulations of human behaviors are addressed in this collection of 31 chapters by top-ranked professionals from all over the world in the field of PR/AI/Biometrics. The book is intended for researchers and graduate students in Computer and Information Science, and in Communication and Control Engineering. Dr. Patrick S. P. Wang is a Professor Emeritus at the College of Computer and Information Science, Northeastern University, USA, Zijiang Chair of ECNU, Shanghai, and NSC Visiting Chair Professor of NTUST, Taipei. |
introduction to genetic algorithms sivanandam: Search Algorithm Dinesh G. Harkut, 2023-02-01 Algorithms, particularly those embedded in search engines, social media platforms, recommendation systems, and information databases, play an increasingly important role in selecting what information is most relevant to us, which is a crucial feature of our participation in public life. These algorithms are not just helpful in our daily lives but are also one of the unavoidable necessities of modern living. This book discusses advances and applications of various types of search algorithms, such as quantum search, harmony search, cognitive search, genetic search, and many others. It is a valuable resource and provides a solid technical base for frontline investigations of search algorithms for scientists and students interested in search and optimization methods. |
introduction to genetic algorithms sivanandam: Computational Intelligence: A Compendium John Fulcher, 2008-05-28 Computational Intelligence: A Compendium presents a well structured overview about this rapidly growing field with contributions from leading experts in Computational Intelligence. The main focus of the compendium is on applied methods, tried-and-proven as being effective to realworld problems, which is especially useful for practitioners, researchers, students and also newcomers to the field. This state-of- handbook-style book has contributions by leading experts. |
introduction to genetic algorithms sivanandam: Advanced Geoscience Remote Sensing Maged Marghany, 2014-06-05 Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations. |
introduction to genetic algorithms sivanandam: Proceedings of Fifth International Conference on Soft Computing for Problem Solving Millie Pant, Kusum Deep, Jagdish Chand Bansal, Atulya Nagar, Kedar Nath Das, 2016-03-19 The proceedings of SocProS 2015 will serve as an academic bonanza for scientists and researchers working in the field of Soft Computing. This book contains theoretical as well as practical aspects using fuzzy logic, neural networks, evolutionary algorithms, swarm intelligence algorithms, etc., with many applications under the umbrella of ‘Soft Computing’. The book will be beneficial for young as well as experienced researchers dealing across complex and intricate real world problems for which finding a solution by traditional methods is a difficult task. The different application areas covered in the proceedings are: Image Processing, Cryptanalysis, Industrial Optimization, Supply Chain Management, Newly Proposed Nature Inspired Algorithms, Signal Processing, Problems related to Medical and Health Care, Networking Optimization Problems, etc. |
introduction to genetic algorithms sivanandam: Advances in Civil Engineering Materials Elham Maghsoudi Nia, Mokhtar Awang, 2024-07-05 This book showcases the latest research in civil engineering and architectural materials, with a specific focus on the following key areas: circularity, energy retrofitting, building materials, structural advancements, and transportation innovations. The research findings and advancements presented in this book are a part of the 7th International Conference on Architecture and Civil Engineering (ICACE 2023), held on 15 November 2023 at the Everly Hotel Putrajaya, Malaysia. This conference serves as a prominent platform for researchers, professionals, and industry experts to exchange knowledge and ideas in order to advance the fields of civil engineering and architecture. |
introduction to genetic algorithms sivanandam: Metaheuristics Mauricio G.C. Resende, J. Pinho de Sousa, 2003-11-30 Combinatorial optimization is the process of finding the best, or optimal, so lution for problems with a discrete set of feasible solutions. Applications arise in numerous settings involving operations management and logistics, such as routing, scheduling, packing, inventory and production management, lo cation, logic, and assignment of resources. The economic impact of combi natorial optimization is profound, affecting sectors as diverse as transporta tion (airlines, trucking, rail, and shipping), forestry, manufacturing, logistics, aerospace, energy (electrical power, petroleum, and natural gas), telecommu nications, biotechnology, financial services, and agriculture. While much progress has been made in finding exact (provably optimal) so lutions to some combinatorial optimization problems, using techniques such as dynamic programming, cutting planes, and branch and cut methods, many hard combinatorial problems are still not solved exactly and require good heuristic methods. Moreover, reaching optimal solutions is in many cases meaningless, as in practice we are often dealing with models that are rough simplifications of reality. The aim of heuristic methods for combinatorial op timization is to quickly produce good-quality solutions, without necessarily providing any guarantee of solution quality. Metaheuristics are high level procedures that coordinate simple heuristics, such as local search, to find solu tions that are of better quality than those found by the simple heuristics alone: Modem metaheuristics include simulated annealing, genetic algorithms, tabu search, GRASP, scatter search, ant colony optimization, variable neighborhood search, and their hybrids. |
introduction to genetic algorithms sivanandam: Genetic Algorithms and Fuzzy Logic Systems Elie Sanchez, Takanori Shibata, Lotfi Asker Zadeh, 1997 Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms. |
introduction to genetic algorithms sivanandam: Intelligent Systems and Applications Yaxin Bi, Rahul Bhatia, Supriya Kapoor, 2019-08-23 The book presents a remarkable collection of chapters covering a wide range of topics in the areas of intelligent systems and artificial intelligence, and their real-world applications. It gathers the proceedings of the Intelligent Systems Conference 2019, which attracted a total of 546 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process, after which 190 were selected for inclusion in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle a host of problems more effectively. This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for an international conference as a venue for reporting on the latest innovations and trends. This book collects both theory and application based chapters on virtually all aspects of artificial intelligence; presenting state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision for future research, it represents a unique and valuable asset. |
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.
How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …
INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.
What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …
Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …
INTRODUCTION Definition & Meaning - Merriam-Webster
The meaning of INTRODUCTION is something that introduces. How to use introduction in a sentence.
How to Write an Introduction, With Examples | Grammarly
Oct 20, 2022 · An introduction should include three things: a hook to interest the reader, some background on the topic so the reader can understand it, and a thesis statement that clearly …
INTRODUCTION | English meaning - Cambridge Dictionary
INTRODUCTION definition: 1. an occasion when something is put into use or brought to a place for the first time: 2. the act…. Learn more.
What Is an Introduction? Definition & 25+ Examples - Enlightio
Nov 5, 2023 · An introduction is the initial section of a piece of writing, speech, or presentation wherein the author presents the topic and purpose of the material. It serves as a gateway for …
Introduction - definition of introduction by The Free Dictionary
Something spoken, written, or otherwise presented in beginning or introducing something, especially: a. A preface, as to a book. b. Music A short preliminary passage in a larger …