History Of Diophantine Equations

Advertisement



  history of diophantine equations: An Introduction to Diophantine Equations Titu Andreescu, Dorin Andrica, Ion Cucurezeanu, 2010-09-02 This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
  history of diophantine equations: Diophantus and Diophantine Equations Isabella Grigoryevna Bashmakova, 2019-01-29 This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.
  history of diophantine equations: History of the Theory of Numbers Leonard Eugene Dickson, 1999 Dickson's History is truly a monumental account of the development of one of the oldest and most important areas of mathematics. It is remarkable today to think that such a complete history could even be conceived. That Dickson was able to accomplish such a feat is attested to by the fact that his History has become the standard reference for number theory up to that time. One need only look at later classics, such as Hardy and Wright, where Dickson's History is frequently cited, to see its importance. The book is divided into three volumes by topic.In scope, the coverage is encyclopedic, leaving very little out. It is interesting to see the topics being resuscitated today that are treated in detail in Dickson. The first volume of Dickson's History covers the related topics of divisibility and primality. It begins with a description of the development of our understanding of perfect numbers. Other standard topics, such as Fermat's theorems, primitive roots, counting divisors, the Mobius function, and prime numbers themselves are treated. Dickson, in this thoroughness, also includes less workhorse subjects, such as methods of factoring, divisibility of factorials and properties of the digits of numbers. Concepts, results and citations are numerous. The second volume is a comprehensive treatment of Diophantine analysis. Besides the familiar cases of Diophantine equations, this rubric also covers partitions, representations as a sum of two, three, four or $n$ squares, Waring's problem in general and Hilbert's solution of it, and perfect squares in arithmetical and geometrical progressions.Of course, many important Diophantine equations, such as Pell's equation, and classes of equations, such as quadratic, cubic and quartic equations, are treated in detail. As usual with Dickson, the account is encyclopedic and the references are numerous. The last volume of Dickson's History is the most modern, covering quadratic and higher forms. The treatment here is more general than in Volume II, which, in a sense, is more concerned with special cases. Indeed, this volume chiefly presents methods of attacking whole classes of problems. Again, Dickson is exhaustive with references and citations.
  history of diophantine equations: Diophantine Equations and Power Integral Bases Istvan Gaal, 2012-12-06 This monograph investigates algorithms for determining power integral bases in algebraic number fields. It introduces the best-known methods for solving several types of diophantine equations using Baker-type estimates, reduction methods, and enumeration algorithms. Particular emphasis is placed on properties of number fields and new applications. The text is illustrated with several tables of various number fields, including their data on power integral bases. Good resource for solving classical types of diophantine equations. Aimed at advanced undergraduate/graduate students and researchers.
  history of diophantine equations: History of the Theory of Numbers, Volume II Leonard Eugene Dickson, 2005-06-07 The three-volume series History of the Theory of Numbers is the work of the distinguished mathematician Leonard Eugene Dickson, who taught at the University of Chicago for four decades and is celebrated for his many contributions to number theory and group theory. This second volume in the series, which is suitable for upper-level undergraduates and graduate students, is devoted to the subject of diophantine analysis. It can be read independently of the preceding volume, which explores divisibility and primality, and volume III, which examines quadratic and higher forms. Featured topics include polygonal, pyramidal, and figurate numbers; linear diophantine equations and congruences; partitions; rational right triangles; triangles, quadrilaterals, and tetrahedra; the sums of two, three, four, and n squares; the number of solutions of quadratic congruences in n unknowns; Liouville's series of eighteen articles; the Pell equation; squares in arithmetical or geometrical progression; equations of degrees three, four, and n; sets of integers with equal sums of like powers; Waring's problem and related results; Fermat's last theorem; and many other related subjects. Indexes of authors cited and subjects appear at the end of the book.
  history of diophantine equations: Analytic Methods for Diophantine Equations and Diophantine Inequalities H. Davenport, 2005-02-07 Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.
  history of diophantine equations: Exponential Diophantine Equations T. N. Shorey, R. Tijdeman, 1986-11-27 This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
  history of diophantine equations: Diophantine Equations and Power Integral Bases István Gaál, 2019-09-03 Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
  history of diophantine equations: Mathematical Achievements of Pre-modern Indian Mathematicians T.K Puttaswamy, 2012-10-22 Mathematics in India has a long and impressive history. Presented in chronological order, this book discusses mathematical contributions of Pre-Modern Indian Mathematicians from the Vedic period (800 B.C.) to the 17th Century of the Christian era. These contributions range across the fields of Algebra, Geometry and Trigonometry. The book presents the discussions in a chronological order, covering all the contributions of one Pre-Modern Indian Mathematician to the next. It begins with an overview and summary of previous work done on this subject before exploring specific contributions in exemplary technical detail. This book provides a comprehensive examination of pre-Modern Indian mathematical contributions that will be valuable to mathematicians and mathematical historians. - Contains more than 160 original Sanskrit verses with English translations giving historical context to the contributions - Presents the various proofs step by step to help readers understand - Uses modern, current notations and symbols to develop the calculations and proofs
  history of diophantine equations: Unit Equations in Diophantine Number Theory Jan-Hendrik Evertse, Kálmán Győry, 2015-12-30 A comprehensive, graduate-level treatment of unit equations and their various applications.
  history of diophantine equations: Quadratic Diophantine Equations Titu Andreescu, Dorin Andrica, 2015-06-29 This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell’s equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.
  history of diophantine equations: Exploring the Number Jungle: A Journey into Diophantine Analysis Edward B. Burger, 2000 The minimal background requirements and the author's fresh approach make this book enjoyable and accessible to a wide range of students, mathematicians, and fans of number theory.--BOOK JACKET.
  history of diophantine equations: Pell’s Equation Edward Barbeau, 2003-01-14 Pell's equation is part of a central area of algebraic number theory that treats quadratic forms and the structure of the rings of integers in algebraic number fields. It is an ideal topic to lead college students, as well as some talented and motivated high school students, to a better appreciation of the power of mathematical technique. Even at the specific level of quadratic diophantine equations, there are unsolved problems, and the higher degree analogues of Pell's equation, particularly beyond the third, do not appear to have been well studied. In this focused exercise book, the topic is motivated and developed through sections of exercises which will allow the readers to recreate known theory and provide a focus for their algebraic practice. There are several explorations that encourage the reader to embark on their own research. A high school background in mathematics is all that is needed to get into this book, and teachers and others interested in mathematics who do not have (or have forgotten) a background in advanced mathematics may find that it is a suitable vehicle for keeping up an independent interest in the subject.
  history of diophantine equations: Quadratic Number Fields Franz Lemmermeyer, 2021-09-18 This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.
  history of diophantine equations: The Equation that Couldn't Be Solved Mario Livio, 2005-09-19 What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
  history of diophantine equations: Heights in Diophantine Geometry Enrico Bombieri, Walter Gubler, 2006 This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.
  history of diophantine equations: Number Theory and Its History Oystein Ore, 2012-07-06 Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.
  history of diophantine equations: Diophantine Equations , 1969 Diophantine Equations
  history of diophantine equations: Introduction to Number Theory L.-K. Hua, 2012-12-06 To Number Theory Translated from the Chinese by Peter Shiu With 14 Figures Springer-Verlag Berlin Heidelberg New York 1982 HuaLooKeng Institute of Mathematics Academia Sinica Beijing The People's Republic of China PeterShlu Department of Mathematics University of Technology Loughborough Leicestershire LE 11 3 TU United Kingdom ISBN -13 : 978-3-642-68132-5 e-ISBN -13 : 978-3-642-68130-1 DOl: 10.1007/978-3-642-68130-1 Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910 -. Introduc tion to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.5 12'.7.82-645. ISBN-13:978-3-642-68132-5 (U.S.). AACR2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustra tions, broadcasting, reproductiOli by photocopying machine or similar means, and storage in data banks. Under {sect} 54 of the German Copyright Law where copies are made for other than private use a fee is payable to VerwertungsgeselIschaft Wort, Munich. © Springer-Verlag Berlin Heidelberg 1982 Softcover reprint of the hardcover 1st edition 1982 Typesetting: Buchdruckerei Dipl.-Ing. Schwarz' Erben KG, Zwettl. 214113140-5432 I 0 Preface to the English Edition The reasons for writing this book have already been given in the preface to the original edition and it suffices to append a few more points
  history of diophantine equations: Number Theory André Weil, 2013-06-29 This book presents a historical overview of number theory. It examines texts that span some thirty-six centuries of arithmetical work, from an Old Babylonian tablet to Legendre’s Essai sur la Théorie des Nombres, written in 1798. Coverage employs a historical approach in the analysis of problems and evolving methods of number theory and their significance within mathematics. The book also takes the reader into the workshops of four major authors of modern number theory: Fermat, Euler, Lagrange and Legendre and presents a detailed and critical examination of their work.
  history of diophantine equations: Algorithms for Diophantine Equations Benne M. M. De Weger, 1989
  history of diophantine equations: Algebraic Number Theory and Fermat's Last Theorem Ian Stewart, David Tall, 2001-12-12 First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it
  history of diophantine equations: Diophantine Geometry Marc Hindry, Joseph H. Silverman, 2013-12-01 This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
  history of diophantine equations: A Course in Number Theory H. E. Rose, 1995 The second edition of this undergraduate textbook is now available in paperback. Covering up-to-date as well as established material, it is the only textbook which deals with all the main areas of number theory, taught in the third year of a mathematics course. Each chapter ends with a collection of problems, and hints and sketch solutions are provided at the end of the book, together with useful tables.
  history of diophantine equations: Geometric Theorems, Diophantine Equations, and Arithmetic Functions J. Sándor, 2002
  history of diophantine equations: Topics from the Theory of Numbers Emil Grosswald, 2010-02-23 Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate, including: (1) divisibility, (2) congruences, (3) the Riemann zeta function, (4) Diophantine equations and Fermat’s conjecture, (5) the theory of partitions. Comprehensive in nature, Topics from the Theory of Numbers is an ideal text for advanced undergraduates and graduate students alike.
  history of diophantine equations: The Mathematics of India P. P. Divakaran, 2018-09-19 This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata’s invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts. Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts.
  history of diophantine equations: Arithmetic of Higher-Dimensional Algebraic Varieties Bjorn Poonen, Yuri Tschinkel, 2004 One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher-dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry. Contributors: Batyrev, V.V.; Broberg, N.; Colliot-Thélène, J-L.; Ellenberg, J.S.; Gille, P.; Graber, T.; Harari, D.; Harris, J.; Hassett, B.; Heath-Brown, R.; Mazur, B.; Peyre, E.; Poonen, B.; Popov, O.N.; Raskind, W.; Salberger, P.; Scharaschkin, V.; Shalika, J.; Starr, J.; Swinnerton-Dyer, P.; Takloo-Bighash, R.; Tschinkel, Y.: Voloch, J.F.; Wittenberg, O.
  history of diophantine equations: Fermat's Last Theorem Harold M. Edwards, 2000-01-14 This introduction to algebraic number theory via the famous problem of Fermats Last Theorem follows its historical development, beginning with the work of Fermat and ending with Kummers theory of ideal factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
  history of diophantine equations: An Introduction to the History of Algebra Jacques Sesiano, This book does not aim to give an exhaustive survey of the history of algebra up to early modern times but merely to present some significant steps in solving equations and, wherever applicable, to link these developments to the extension of the number system. Various examples of problems, with their typical solution methods, are analyzed, and sometimes translated completely. Indeed, it is another aim of this book to ease the reader's access to modern editions of old mathematical texts, or even to the original texts; to this end, some of the problems discussed in the text have been reproduced in the appendices in their original language (Greek, Latin, Arabic, Hebrew, French, German, Provencal, and Italian) with explicative notes. --Book Jacket.
  history of diophantine equations: Fundamentals of Diophantine Geometry S. Lang, 1983-08-29 Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
  history of diophantine equations: Classical Theory of Algebraic Numbers Paulo Ribenboim, 2013-11-11 Gauss created the theory of binary quadratic forms in Disquisitiones Arithmeticae and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics.
  history of diophantine equations: The Pell Equation Edward Everett Whitford, 1912
  history of diophantine equations: Diophantus of Alexandria Sir Thomas Little Heath, 1910
  history of diophantine equations: A Book of Abstract Algebra Charles C Pinter, 2010-01-14 Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
  history of diophantine equations: Elements of Algebra Leonhard Euler, 1810
  history of diophantine equations: Theory of Linear and Integer Programming Alexander Schrijver, 1998-06-11 Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
  history of diophantine equations: A History of Ancient Mathematical Astronomy O. Neugebauer, 2004-09-17 From the reviews: This monumental work will henceforth be the standard interpretation of ancient mathematical astronomy. It is easy to point out its many virtues: comprehensiveness and common sense are two of the most important. Neugebauer has studied profoundly every relevant text in Akkadian, Egyptian, Greek, and Latin, no matter how fragmentary; [...] With the combination of mathematical rigor and a sober sense of the true nature of the evidence, he has penetrated the astronomical and the historical significance of his material. [...] His work has been and will remain the most admired model for those working with mathematical and astronomical texts. D. Pingree in Bibliotheca Orientalis, 1977 ... a work that is a landmark, not only for the history of science, but for the history of scholarship. HAMA [History of Ancient Mathematical Astronomy] places the history of ancient Astronomy on a entirely new foundation. We shall not soon see its equal. N.M. Swerdlow in Historia Mathematica, 1979
  history of diophantine equations: The Equations World Boris Pritsker, 2019-08-14 Equations are the lifeblood of mathematics, science, and technology, and this book examines equations of all kinds. With his masterful ability to convey the excitement and elegance of mathematics, author Boris Pritsker explores equations from the simplest to the most complex—their history, their charm, and their usefulness in solving problems. The Equations World bridges the fields of algebra, geometry, number theory, and trigonometry, solving more than 280 problems by employing a wide spectrum of techniques. The author demystifies the subject with efficient hints, tricks, and methods that reveal the fun and satisfaction of problem solving. He also demonstrates how equations can serve as important tools for expressing a problem's data, showing the ways in which they assist in fitting parts together to solve the whole puzzle. In addition, brief historical tours reveal the foundations of mathematical thought by tracing the ideas and approaches developed by mathematicians over the centuries. Both recreational mathematicians and ambitious students will find this book an ample source of enlightenment and enjoyment.
  history of diophantine equations: Greek Mathematical Thought and the Origin of Algebra Jacob Klein, 2013-04-22 Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
HISTORY | Topics, Shows and This Day in History
Get fascinating history stories twice a week that connect the past with today’s world, plus an in-depth exploration every Friday.

Welcome to My Activity
Explore and manage your Google activity, including searches, websites visited, and videos watched, to personalize your experience.

History - Wikipedia
History is the systematic study of the past, focusing primarily on the human past. As an academic discipline, it analyses and interprets evidence to construct narratives about what happened …

World History Encyclopedia
The free online history encyclopedia with fact-checked articles, images, videos, maps, timelines and more; operated as a non-profit organization.

World History Portal | Britannica
4 days ago · Does history really repeat itself, or can we learn from the mistakes of those who came before us? History provides a chronological, statistical, and cultural record of the events, …

History & Culture - National Geographic
Learn the untold stories of human history and the archaeological discoveries that reveal our ancient past. Plus, explore the lived experiences and traditions of diverse cultures and identities.

HistoryNet: Your Authoritative Source for U.S. & World History
Search our archive of 5,000+ features, photo galleries and articles on U.S. & world history, from wars and major events to today's hot topics. Close Subscribe Now

HISTORY | Topics, Shows and This Day in History
Get fascinating history stories twice a week that connect the past with today’s world, plus an in-depth exploration every Friday.

Welcome to My Activity
Explore and manage your Google activity, including searches, websites visited, and videos watched, to personalize your experience.

History - Wikipedia
History is the systematic study of the past, focusing primarily on the human past. As an academic discipline, it analyses and interprets evidence to construct narratives about what happened …

World History Encyclopedia
The free online history encyclopedia with fact-checked articles, images, videos, maps, timelines and more; operated as a non-profit organization.

World History Portal | Britannica
4 days ago · Does history really repeat itself, or can we learn from the mistakes of those who came before us? History provides a chronological, statistical, and cultural record of the events, …

History & Culture - National Geographic
Learn the untold stories of human history and the archaeological discoveries that reveal our ancient past. Plus, explore the lived experiences and traditions of diverse cultures and identities.

HistoryNet: Your Authoritative Source for U.S. & World History
Search our archive of 5,000+ features, photo galleries and articles on U.S. & world history, from wars and major events to today's hot topics. Close Subscribe Now