Advertisement
hale ordinary differential equations: Ordinary Differential Equations Jack K. Hale, 1980 |
hale ordinary differential equations: Theory of Functional Differential Equations Jack K. Hale, 2012-12-06 Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit. |
hale ordinary differential equations: Introduction to Functional Differential Equations Jack K. Hale, Sjoerd M. Verduyn Lunel, 2013-11-21 The present book builds upon an earlier work of J. Hale, Theory of Func tional Differential Equations published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constantsformula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . . |
hale ordinary differential equations: Ordinary Differential Equations Jack K. Hale, 1969 |
hale ordinary differential equations: Oscillations in Nonlinear Systems Jack K. Hale, 2015-03-24 By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction provides a unified approach for obtaining periodic solutions to nonautonomous and autonomous differential equations. 1963 edition. |
hale ordinary differential equations: Stability Theory of Differential Equations Richard Bellman, 2013-02-20 Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit. |
hale ordinary differential equations: Lectures on Ordinary Differential Equations Witold Hurewicz, 2014-07-21 Introductory treatment explores existence theorems for first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. A rigorous and lively introduction. — The American Mathematical Monthly. 1958 edition. |
hale ordinary differential equations: Ordinary Differential Equations. Hale Jack K. Hale, 1969 |
hale ordinary differential equations: Methods of Bifurcation Theory S.-N. Chow, J. K. Hale, 2012-12-06 An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable. |
hale ordinary differential equations: Differential Equations Francesco Giacomo Tricomi, 1961 |
hale ordinary differential equations: Differential Equations and Dynamical Systems Lawrence Perko, 2012-12-06 Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations. |
hale ordinary differential equations: Exploring ODEs Lloyd N.Trefethen, Asgeir Birkisson, Tobin A. Driscoll, 2017-12-21 Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration. |
hale ordinary differential equations: Delay Differential Equations and Applications O. Arino, M.L. Hbid, E. Ait Dads, 2006-09-25 This book groups material that was used for the Marrakech 2002 School on Delay Di'erential Equations and Applications. The school was held from September 9-21 2002 at the Semlalia College of Sciences of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and 15 instructors originating from 21 countries attended the school. Fin- cial limitations only allowed support for part of the people from Africa andAsiawhohadexpressedtheirinterestintheschoolandhadhopedto come. Theschoolwassupportedby'nancementsfromNATO-ASI(Nato advanced School), the International Centre of Pure and Applied Mat- matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity of the school consisted in courses, plenary lectures (3) and communi- tions (9), from Monday through Friday, 8. 30 am to 6. 30 pm. Courses were divided into units of 45mn duration, taught by block of two units, with a short 5mn break between two units within a block, and a 25mn break between two blocks. The school was intended for mathematicians willing to acquire some familiarity with delay di'erential equations or enhance their knowledge on this subject. The aim was indeed to extend the basic set of knowledge, including ordinary di'erential equations and semilinearevolutionequations,suchasforexamplethedi'usion-reaction equations arising in morphogenesis or the Belouzov-Zhabotinsky ch- ical reaction, and the classic approach for the resolution of these eq- tions by perturbation, to equations having in addition terms involving past values of the solution. |
hale ordinary differential equations: Differential Dynamical Systems James D. Meiss, 2007-01-01 Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems conceptsflow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems. Audience This textbook is intended for senior undergraduates and first-year graduate students in pure and applied mathematics, engineering, and the physical sciences. Readers should be comfortable with elementary differential equations and linear algebra and should have had exposure to advanced calculus. Contents List of Figures; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Linear Systems; Chapter 3: Existence and Uniqueness; Chapter 4: Dynamical Systems; Chapter 5: Invariant Manifolds; Chapter 6: The Phase Plane; Chapter 7: Chaotic Dynamics; Chapter 8: Bifurcation Theory; Chapter 9: Hamiltonian Dynamics; Appendix: Mathematical Software; Bibliography; Index |
hale ordinary differential equations: Ordinary and Delay Differential Equations Joseph Wiener, 1992-10-12 Reflects the contemporary achievements and problems in the theory and applications of ordinary and delay differential equations; summarises recent results and methods; and emphasises new ideas and directions for future research and activity. |
hale ordinary differential equations: Differential Equations Shepley L. Ross, 1974 Fundamental methods and applications; Fundamental theory and further methods; |
hale ordinary differential equations: Dynamics in Infinite Dimensions Jack K. Hale, Luis T. Magalhaes, Waldyr Oliva, 2006-04-18 State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications |
hale ordinary differential equations: A Course in Ordinary Differential Equations Bindhyachal Rai, D. P. Choudhury, Herbert I. Freedman, 2002 Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations. |
hale ordinary differential equations: Ordinary Differential Equations and Dynamical Systems Gerald Teschl, 2024-01-12 This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations. |
hale ordinary differential equations: Ordinary Differential Equations Bernd J. Schroers, 2011-09-29 Ordinary Differential Equations introduces key concepts and techniques in the field and shows how they are used in current mathematical research and modelling. It deals specifically with initial value problems, which play a fundamental role in a wide range of scientific disciplines, including mathematics, physics, computer science, statistics and biology. This practical book is ideal for students and beginning researchers working in any of these fields who need to understand the area of ordinary differential equations in a short time. |
hale ordinary differential equations: Ordinary Differential Equations Morris Tenenbaum, Harry Pollard, 1985-10-01 Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more. |
hale ordinary differential equations: Asymptotic Behavior of Dissipative Systems Jack K. Hale, 2010-01-04 This monograph reports the advances that have been made in the area by the author and many other mathematicians; it is an important source of ideas for the researchers interested in the subject. --Zentralblatt MATH Although advanced, this book is a very good introduction to the subject, and the reading of the abstract part, which is elegant, is pleasant. ... this monograph will be of valuable interest for those who aim to learn in the very rapidly growing subject of infinite-dimensional dissipative dynamical systems. --Mathematical Reviews This book is directed at researchers in nonlinear ordinary and partial differential equations and at those who apply these topics to other fields of science. About one third of the book focuses on the existence and properties of the flow on the global attractor for a discrete or continuous dynamical system. The author presents a detailed discussion of abstract properties and examples of asymptotically smooth maps and semigroups. He also covers some of the continuity properties of the global attractor under perturbation, its capacity and Hausdorff dimension, and the stability of the flow on the global attractor under perturbation. The remainder of the book deals with particular equations occurring in applications and especially emphasizes delay equations, reaction-diffusion equations, and the damped wave equations. In each of the examples presented, the author shows how to verify the existence of a global attractor, and, for several examples, he discusses some properties of the flow on the global attractor. |
hale ordinary differential equations: Ordinary Differential Equations Jack K. Hale, 2009-01-01 This rigorous treatment prepares readers for the study of differential equations and shows them how to research current literature. It emphasizes nonlinear problems and specific analytical methods. 1969 edition. |
hale ordinary differential equations: Ordinary Differential Equations with Applications Carmen Chicone, 2008-04-08 This book is based on a two-semester course in ordinary di?erential eq- tions that I have taught to graduate students for two decades at the U- versity of Missouri. The scope of the narrative evolved over time from an embryonic collection of supplementary notes, through many classroom tested revisions, to a treatment of the subject that is suitable for a year (or more) of graduate study. If it is true that students of di?erential equations giveaway their point of viewbythewaytheydenotethederivativewith respecttotheindependent variable, then the initiated reader can turn to Chapter 1, note that I write x ?,not x , and thus correctly deduce that this book is written with an eye toward dynamical systems. Indeed, this book contains a thorough int- duction to the basic properties of di?erential equations that are needed to approach the modern theory of (nonlinear) dynamical systems. However, this is not the whole story. The book is also a product of my desire to demonstrate to my students that di?erential equations is the least insular of mathematical subjects, that it is strongly connected to almost all areas of mathematics, and it is an essential element of applied mathematics. |
hale ordinary differential equations: Topics in Nonlinear Functional Analysis L. Nirenberg, 1974 Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz global bifurcation theorem. Stability of the branches is also studied. The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems. For more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University. |
hale ordinary differential equations: Nonlinear Functional Analysis Klaus Deimling, 2013-10-09 This text offers a survey of the main ideas, concepts, and methods that constitute nonlinear functional analysis. It features extensive commentary, many examples, and interesting, challenging exercises. 1985 edition. |
hale ordinary differential equations: Elements of Applied Bifurcation Theory Yuri Kuznetsov, 2004-06-29 Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis. |
hale ordinary differential equations: Nonlinear Systems Analysis M. Vidyasagar, 2002-01-01 When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems. |
hale ordinary differential equations: Ordinary Differential Equations Vladimir I. Arnold, 1992-05-08 Few books on Ordinary Differential Equations (ODEs) have the elegant geometric insight of this one, which puts emphasis on the qualitative and geometric properties of ODEs and their solutions, rather than on routine presentation of algorithms. From the reviews: Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation. --SIAM REVIEW |
hale ordinary differential equations: Ordinary Differential Equations And Calculus Of Variations Victor Yu Reshetnyak, Mikola Vladimirovich Makarets, 1995-06-30 This problem book contains exercises for courses in differential equations and calculus of variations at universities and technical institutes. It is designed for non-mathematics students and also for scientists and practicing engineers who feel a need to refresh their knowledge. The book contains more than 260 examples and about 1400 problems to be solved by the students — much of which have been composed by the authors themselves. Numerous references are given at the end of the book to furnish sources for detailed theoretical approaches, and expanded treatment of applications. |
hale ordinary differential equations: Solving ODEs with MATLAB L. F. Shampine, I. Gladwell, S. Thompson, 2009-12-03 This book is a text for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics. Prerequisites are a first course in the theory of ODEs and a survey course in numerical analysis, in addition to specific programming experience, preferably in MATLAB, and knowledge of elementary matrix theory. Professionals will also find that this useful concise reference contains reviews of technical issues and realistic and detailed examples. The programs for the examples are supplied on the accompanying web site and can serve as templates for solving other problems. Each chapter begins with a discussion of the facts of life for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understaning the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples. |
hale ordinary differential equations: A Class of Functional Equations of Neutral Type Jack K. Hale, Kenneth Ray Meyer, 1967 |
hale ordinary differential equations: Geometric Theory of Semilinear Parabolic Equations Daniel Henry, 2014-01-15 |
hale ordinary differential equations: Global Bifurcations and Chaos Stephen Wiggins, 2014-03-14 Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory. |
hale ordinary differential equations: Differential Equations and Their Applications M. Braun, 2012-12-06 This textbook is a unique blend of the theory of differential equations and their exciting application to real world problems. First, and foremost, it is a rigorous study of ordinary differential equations and can be fully un derstood by anyone who has completed one year of calculus. However, in addition to the traditional applications, it also contains many exciting real life problems. These applications are completely self contained. First, the problem to be solved is outlined clearly, and one or more differential equa tions are derived as a model for this problem. These equations are then solved, and the results are compared with real world data. The following applications are covered in this text. I. In Section 1.3 we prove that the beautiful painting Disciples of Emmaus which was bought by the Rembrandt Society of Belgium for $170,000 was a modem forgery. 2. In Section 1.5 we derive differential equations which govern the population growth of various species, and compare the results predicted by our models with the known values of the populations. 3. In Section 1.6 we derive differential equations which govern the rate at which farmers adopt new innovations. Surprisingly, these same differen tial equations govern the rate at which technological innovations are adopted in such diverse industries as coal, iron and steel, brewing, and railroads. |
hale ordinary differential equations: A Second Course in Elementary Differential Equations Paul Waltman, 2014-05-10 A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics. |
hale ordinary differential equations: Solving Differential Equations in R Karline Soetaert, Jeff Cash, Francesca Mazzia, 2012-06-06 Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis. |
hale ordinary differential equations: Dynamical Systems and Numerical Analysis A. M. Stuart, A. R. Humphries, 1998-11-28 The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulated as dynamical systems and the convergence and stability properties of the methods are examined. |
hale ordinary differential equations: Hill's Equation Wilhelm Magnus, Stanley Winkler, 2013-10-29 This two-part treatment explains basic theory and details, including oscillatory solutions, intervals of stability and instability, discriminants, and coexistence. Particular attention to stability problems and coexistence of periodic solutions. 1966 edition. |
hale ordinary differential equations: Differential Equations: From Calculus to Dynamical Systems Virginia W. Noonburg, 2019-01-24 A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature. |
Fire Equipment Supplier, Fire Fighting Pumps | Hale Products Home
Hale Products is a leader in fire suppression pumps, plumbing, valves, foam, CAFs, electronics, g auges, and ES-key multiplexing systems.
HALE Definition & Meaning - Merriam-Webster
The meaning of HALE is free from defect, disease, or infirmity : sound; also : retaining exceptional health and vigor. How to use hale in a sentence.
Hail vs. Hale – What’s the Difference? - Writing Explained
Hale is an adjective that means healthy and a verb that means to compel to come to court. To summarize, Hail is a type of frozen precipitation or a verb meaning to be from somewhere. …
Hail vs. Hale: What's the Difference? - Grammarly
Hale is an adjective describing someone, often an older person, as being healthy, robust, and vigorous. It highlights physical well-being and is sometimes paired with its synonym hearty. …
HALE Definition & Meaning | Dictionary.com
Hale definition: free from disease or infirmity; robust; vigorous.. See examples of HALE used in a sentence.
Hale (band) - Wikipedia
Hale is a Filipino alternative rock band, formed in Manila, Philippines in 2004. The group originally consisted of singer and guitarist Champ Lui Pio, bassist Sheldon Gellada, guitarist Roll …
hale vs. hail : Commonly confused words | Vocabulary.com
hale. If you're hale, you’re strong and in good health. Think "hale and hearty," the well-known phrase to describe someone who can lift a piano or work ten hours in a field without blinking …
HALE definition and meaning | Collins English Dictionary
If you describe people, especially people who are old, as hale, you mean that they are healthy.
hale - Wiktionary, the free dictionary
May 29, 2025 · hale (third-person singular simple present hales, present participle haling, simple past and past participle haled) (transitive) To drag or pull, especially forcibly.
HALE | definition in the Cambridge Learner’s Dictionary
HALE meaning: healthy and full of life. Learn more.
Fire Equipment Supplier, Fire Fighting Pumps | Hale Products Home
Hale Products is a leader in fire suppression pumps, plumbing, valves, foam, CAFs, electronics, g auges, and ES-key multiplexing systems.
HALE Definition & Meaning - Merriam-Webster
The meaning of HALE is free from defect, disease, or infirmity : sound; also : retaining exceptional health and vigor. How to use hale in a sentence.
Hail vs. Hale – What’s the Difference? - Writing Explained
Hale is an adjective that means healthy and a verb that means to compel to come to court. To summarize, Hail is a type of frozen precipitation or a verb meaning to be from somewhere. …
Hail vs. Hale: What's the Difference? - Grammarly
Hale is an adjective describing someone, often an older person, as being healthy, robust, and vigorous. It highlights physical well-being and is sometimes paired with its synonym hearty. …
HALE Definition & Meaning | Dictionary.com
Hale definition: free from disease or infirmity; robust; vigorous.. See examples of HALE used in a sentence.
Hale (band) - Wikipedia
Hale is a Filipino alternative rock band, formed in Manila, Philippines in 2004. The group originally consisted of singer and guitarist Champ Lui Pio, bassist Sheldon Gellada, guitarist Roll …
hale vs. hail : Commonly confused words | Vocabulary.com
hale. If you're hale, you’re strong and in good health. Think "hale and hearty," the well-known phrase to describe someone who can lift a piano or work ten hours in a field without blinking …
HALE definition and meaning | Collins English Dictionary
If you describe people, especially people who are old, as hale, you mean that they are healthy.
hale - Wiktionary, the free dictionary
May 29, 2025 · hale (third-person singular simple present hales, present participle haling, simple past and past participle haled) (transitive) To drag or pull, especially forcibly.
HALE | definition in the Cambridge Learner’s Dictionary
HALE meaning: healthy and full of life. Learn more.