History Of Algebraic Topology

Advertisement



  history of algebraic topology: A History of Algebraic and Differential Topology, 1900 - 1960 Jean Dieudonné, 2009-09-01 This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
  history of algebraic topology: History of Topology I.M. James, 1999-08-24 Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who gave topology wings in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.
  history of algebraic topology: A History of Algebraic and Differential Topology, 1900 - 1960 Jean Dieudonné, 2009-06-09 This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
  history of algebraic topology: A History of Algebraic and Differential Topology, 1900 - 1960 Jean Dieudonné, 2009-07-21 This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
  history of algebraic topology: Algebraic Topology Allen Hatcher, 2002 In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book.
  history of algebraic topology: History Algebraic Geometry Jean Dieudonné, 1985-05-30 This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.
  history of algebraic topology: Foundations of Algebraic Topology Samuel Eilenberg, Norman Steenrod, 2015-12-08 The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
  history of algebraic topology: An Introduction to Algebraic Topology Andrew H. Wallace, 2007-02-27 Originally published: Homology theory on algebraic varieties. New York: Pergamon Press, 1957.
  history of algebraic topology: Basic Concepts of Algebraic Topology F.H. Croom, 2012-12-06 This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require mathematical maturity beyond the junior level.
  history of algebraic topology: Algebraic Topology Marvin J. Greenberg, 2018-03-05 Great first book on algebraic topology. Introduces (co)homology through singular theory.
  history of algebraic topology: Homology Theory James W. Vick, 1994-01-07 This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
  history of algebraic topology: A Concise Course in Algebraic Topology J. Peter May, 2019
  history of algebraic topology: Differential Forms in Algebraic Topology Raoul Bott, Loring W. Tu, 2013-04-17 Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
  history of algebraic topology: Tool and Object Ralph Krömer, 2007-06-25 Category theory is a general mathematical theory of structures and of structures of structures. It occupied a central position in contemporary mathematics as well as computer science. This book describes the history of category theory whereby illuminating its symbiotic relationship to algebraic topology, homological algebra, algebraic geometry and mathematical logic and elaboratively develops the connections with the epistemological significance.
  history of algebraic topology: Topology and K-Theory Robert Penner, 2020-04-25 These are notes from a graduate student course on algebraic topology and K-theory given by Daniel Quillen at the Massachusetts Institute of Technology during 1979-1980. He had just received the Fields Medal for his work on these topics among others and was funny and playful with a confident humility from the start. These are not meant to be polished lecture notes, rather, things are presented as did Quillen reflected in the hand-written notes, resisting any temptation to change or add notation, details or elaborations. Indeed, the text is faithful to Quillen's own exposition, even respecting the {\sl board-like presentation} of formulae, diagrams and proofs, omitting numbering theorems in favor of names and so on. This is meant to be Quillen on Quillen as it happened forty years ago, an informal text for a second-semester graduate student on topology, category theory and K-theory, a potential preface to studying Quillen's own landmark papers and an informal glimpse of his great mind. The intellectual pace of the lectures, namely fast and lively, is Quillen himself, and part of the point here is to capture some of this intimacy. To be sure, much has happened since then from this categorical perspective started by Grothendieck, and Misha Kapranov has contributed an Afterword in order to make it more useful to current students.
  history of algebraic topology: Algebraic Topology - Homotopy and Homology Robert M. Switzer, 2017-12-01 From the reviews: The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature... (S.Y. Husseini in Mathematical Reviews, 1976)
  history of algebraic topology: Basic Algebraic Topology and its Applications Mahima Ranjan Adhikari, 2016-09-16 This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. The book studies a variety of maps, which are continuous functions between spaces. It also reveals the importance of algebraic topology in contemporary mathematics, theoretical physics, computer science, chemistry, economics, and the biological and medical sciences, and encourages students to engage in further study.
  history of algebraic topology: Elementary Topology O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
  history of algebraic topology: Lectures on Algebraic Topology Sergeĭ Vladimirovich Matveev, 2006 Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.
  history of algebraic topology: A First Course in Algebraic Topology Czes Kosniowski, 1980-09-25 This self-contained introduction to algebraic topology is suitable for a number of topology courses. It consists of about one quarter 'general topology' (without its usual pathologies) and three quarters 'algebraic topology' (centred around the fundamental group, a readily grasped topic which gives a good idea of what algebraic topology is). The book has emerged from courses given at the University of Newcastle-upon-Tyne to senior undergraduates and beginning postgraduates. It has been written at a level which will enable the reader to use it for self-study as well as a course book. The approach is leisurely and a geometric flavour is evident throughout. The many illustrations and over 350 exercises will prove invaluable as a teaching aid. This account will be welcomed by advanced students of pure mathematics at colleges and universities.
  history of algebraic topology: Plato's Ghost Jeremy Gray, 2008-09-02 Plato's Ghost is the first book to examine the development of mathematics from 1880 to 1920 as a modernist transformation similar to those in art, literature, and music. Jeremy Gray traces the growth of mathematical modernism from its roots in problem solving and theory to its interactions with physics, philosophy, theology, psychology, and ideas about real and artificial languages. He shows how mathematics was popularized, and explains how mathematical modernism not only gave expression to the work of mathematicians and the professional image they sought to create for themselves, but how modernism also introduced deeper and ultimately unanswerable questions. Plato's Ghost evokes Yeats's lament that any claim to worldly perfection inevitably is proven wrong by the philosopher's ghost; Gray demonstrates how modernist mathematicians believed they had advanced further than anyone before them, only to make more profound mistakes. He tells for the first time the story of these ambitious and brilliant mathematicians, including Richard Dedekind, Henri Lebesgue, Henri Poincaré, and many others. He describes the lively debates surrounding novel objects, definitions, and proofs in mathematics arising from the use of naïve set theory and the revived axiomatic method—debates that spilled over into contemporary arguments in philosophy and the sciences and drove an upsurge of popular writing on mathematics. And he looks at mathematics after World War I, including the foundational crisis and mathematical Platonism. Plato's Ghost is essential reading for mathematicians and historians, and will appeal to anyone interested in the development of modern mathematics.
  history of algebraic topology: A Basic Course in Algebraic Topology William S. Massey, 2019-06-28 This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.
  history of algebraic topology: Essays in the History of Lie Groups and Algebraic Groups Armand Borel, 2001 Algebraic groups and Lie groups are important in most major areas of mathematics, occuring in diverse roles such as the symmetries of differential equations and as central figures in the Langlands program for number theory. In this book, Professor Borel looks at the development of the theory of Lie groups and algebraic groups, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. As the starting point of this passagefrom local to global, the author takes Lie's theory of local analytic transformation groups and Lie algebras. He then follows the globalization of the process in its two most important frameworks: (transcendental) differential geometry and algebraic geometry. Chapters II to IV are devoted to the former,Chapters V to VIII, to the latter.The essays in the first part of the book survey various proofs of the full reducibility of linear representations of $SL 2M$, the contributions H. Weyl to representation and invariant theory for Lie groups, and conclude with a chapter on E. Cartan's theory of symmetric spaces and Lie groups in the large.The second part of the book starts with Chapter V describing the development of the theory of linear algebraic groups in the 19th century. Many of the main contributions here are due to E. Study, E. Cartan, and above all, to L. Maurer. After being abandoned for nearly 50 years, the theory was revived by Chevalley and Kolchin and then further developed by many others. This is the focus of Chapter VI. The book concludes with two chapters on various aspects of the works of Chevalley on Lie groupsand algebraic groups and Kolchin on algebraic groups and the Galois theory of differential fields.The author brings a unique perspective to this study. As an important developer of some of the modern elements of both the differential geometric and the algebraic geometric sides of the theory, he has a particularly deep appreciation of the underlying mathematics. His lifelong involvement and his historical research in the subject give him a special appreciation of the story of its development.
  history of algebraic topology: Applications of Algebraic Topology S. Lefschetz, 1975-05-13 This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.
  history of algebraic topology: Set Theory Felix Hausdorff, 2021-08-24 This work is a translation into English of the Third Edition of the classic German language work Mengenlehre by Felix Hausdorff published in 1937. From the Preface (1937): “The present book has as its purpose an exposition of the most important theorems of the theory of sets, along with complete proofs, so that the reader should not find it necessary to go outside this book for supplementary details while, on the other hand, the book should enable him to undertake a more detailed study of the voluminous literature on the subject. The book does not presuppose any mathematical knowledge beyond the differential and integral calculus, but it does require a certain maturity in abstract reasoning; qualified college seniors and first year graduate students should have no difficulty in making the material their own … The mathematician will … find in this book some things that will be new to him, at least as regards formal presentation and, in particular, as regards the strengthening of theorems, the simplification of proofs, and the removal of unnecessary hypotheses.”
  history of algebraic topology: Episodes in the History of Modern Algebra (1800-1950) Jeremy J. Gray, Karen Hunger Parshall, 2011-08-31 Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call modern algebra is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in his categorical approach to algebraic geometry. In addition to considering the technical development of various aspects of algebraic thought, the historians of modern algebra whose work is united in this volume explore such themes as the changing aims and organization of the subject as well as the often complex lines of mathematical communication within and across national boundaries. Among the specific algebraic ideas considered are the concept of divisibility and the introduction of non-commutative algebras into the study of number theory and the emergence of algebraic geometry in the twentieth century. The resulting volume is essential reading for anyone interested in the history of modern mathematics in general and modern algebra in particular. It will be of particular interest to mathematicians and historians of mathematics.
  history of algebraic topology: Elements Of Algebraic Topology James R. Munkres, James R Munkres, 2018-03-05 Elements of Algebraic Topology provides the most concrete approach to the subject. With coverage of homology and cohomology theory, universal coefficient theorems, Kunneth theorem, duality in manifolds, and applications to classical theorems of point-set topology, this book is perfect for comunicating complex topics and the fun nature of algebraic topology for beginners.
  history of algebraic topology: Topics in Topology. (AM-10), Volume 10 Solomon Lefschetz, 2016-03-02 Solomon Lefschetz pioneered the field of topology--the study of the properties of manysided figures and their ability to deform, twist, and stretch without changing their shape. According to Lefschetz, If it's just turning the crank, it's algebra, but if it's got an idea in it, it's topology. The very word topology comes from the title of an earlier Lefschetz monograph published in 1920. In Topics in Topology Lefschetz developed a more in-depth introduction to the field, providing authoritative explanations of what would today be considered the basic tools of algebraic topology. Lefschetz moved to the United States from France in 1905 at the age of twenty-one to find employment opportunities not available to him as a Jew in France. He worked at Westinghouse Electric Company in Pittsburgh and there suffered a horrible laboratory accident, losing both hands and forearms. He continued to work for Westinghouse, teaching mathematics, and went on to earn a Ph.D. and to pursue an academic career in mathematics. When he joined the mathematics faculty at Princeton University, he became one of its first Jewish faculty members in any discipline. He was immensely popular, and his memory continues to elicit admiring anecdotes. Editor of Princeton University Press's Annals of Mathematics from 1928 to 1958, Lefschetz built it into a world-class scholarly journal. He published another book, Lectures on Differential Equations, with Princeton in 1946.
  history of algebraic topology: History of Algebraic and Differential Topology 1900-1960 J. Dieudonné, 1994
  history of algebraic topology: Topology and Geometry Glen E. Bredon, 2014-09-01
  history of algebraic topology: A Combinatorial Introduction to Topology Michael Henle, 1994-01-01 Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
  history of algebraic topology: Geometry in History S. G. Dani, Athanase Papadopoulos, 2020-11-27 This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
  history of algebraic topology: An Introduction to Homological Algebra Charles A. Weibel, 1994 A portrait of the subject of homological algebra as it exists today.
  history of algebraic topology: Elements of the History of Mathematics N. Bourbaki, 2013-12-01 Each volume of Nicolas Bourbakis well-known work, The Elements of Mathematics, contains a section or chapter devoted to the history of the subject. This book collects together those historical segments with an emphasis on the emergence, development, and interaction of the leading ideas of the mathematical theories presented in the Elements. In particular, the book provides a highly readable account of the evolution of algebra, geometry, infinitesimal calculus, and of the concepts of number and structure, from the Babylonian era through to the 20th century.
  history of algebraic topology: More Concise Algebraic Topology J. P. May, K. Ponto, 2012-02 With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
  history of algebraic topology: Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry Jean H. Gallier, Jocelyn Quaintance, 2022 Homology and cohomology -- De Rham cohomology -- Singular homology and cohomology -- Simplicial homology and cohomology -- Homology and cohomology of CW complexes -- Poincaré duality -- Presheaves and sheaves; Basics -- Cech cohomology with values in a presheaf -- Presheaves and sheaves; A deeper look -- Derived functors, [delta]-functors, and [del]-functors -- Universal coefficient theorems -- Cohomology of sheaves -- Alexander and Alexander-Lefschetz duality -- Spectral sequences.
  history of algebraic topology: Homology Theory Peter John Hilton, Shaun Wylie, 1967
  history of algebraic topology: Studies in Topology Nick M. Stavrakas, Keith R. Allen, 1975
  history of algebraic topology: Algebraic Topology William Fulton, 1997-09-05 To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups
  history of algebraic topology: Papers on Topology Henri Poincaré, 2010-01-01 The papers in this book chronicle Henri Poincare's Journey in algebraic topology between 1892 and 1904, from his discovery of the fundamental group to his formulation of the Poincare conjecture. For the first time in English translation, one can follow every step (and occasional stumble) along the way, with the help of translator John Stillwell's introduction and editorial comments. Now that the Poincare conjecture has finally been proved, by Grigory perelman, it seems timely to collect the papers that from the background to this famous conjecture. Poincare's papers are in fact the first draft of algebraic topology, introducing its main subject matter (manifolds) and basic concepts (homotopy and homology). All mathematicians interested in topology and its history will enjoy this book. These famous papers, with their characteristic mixture of deep insight and inevitable confusion, are here presented complete and in English for the first time, with a commentary by their translator, John Stillwell, that guides the reader into the beart of the subject. One of the finest works of one of the great mathematicians is now available anew for students and experts alike.---Jeremy Gray The AMS and John Stillwell have made an important contribution to the mathematics literature in this translation of Poincare. For many of us, these great papers on the foundations of topology are given greater clarity in English. Moreover, reading Poincare here illustrates the ultimate in research by successive approximations (akin to my own way of mathematical thinking)---Stephen Smale I am a proud owner of the original complete works in green leather in French bought for a princely sum in Paris around 1975. I have read in them exten-sively, and often during topology lectures I refer to parts of these works. I am happy that there is now the option for my students to read them in English---Dennis Sullivan
HISTORY | Topics, Shows and This Day in History
Get fascinating history stories twice a week that connect the past with today’s world, plus an in-depth exploration every Friday.

Welcome to My Activity
Explore and manage your Google activity, including searches, websites visited, and videos watched, to personalize your experience.

History - Wikipedia
History is the systematic study of the past, focusing primarily on the human past. As an academic discipline, it analyses and interprets evidence to construct narratives about what happened …

World History Encyclopedia
The free online history encyclopedia with fact-checked articles, images, videos, maps, timelines and more; operated as a non-profit organization.

World History Portal | Britannica
4 days ago · Does history really repeat itself, or can we learn from the mistakes of those who came before us? History provides a chronological, statistical, and cultural record of the events, …

History & Culture - National Geographic
Learn the untold stories of human history and the archaeological discoveries that reveal our ancient past. Plus, explore the lived experiences and traditions of diverse cultures and identities.

HistoryNet: Your Authoritative Source for U.S. & World History
Search our archive of 5,000+ features, photo galleries and articles on U.S. & world history, from wars and major events to today's hot topics. Close Subscribe Now

HISTORY | Topics, Shows and This Day in History
Get fascinating history stories twice a week that connect the past with today’s world, plus an in-depth exploration every Friday.

Welcome to My Activity
Explore and manage your Google activity, including searches, websites visited, and videos watched, to personalize your experience.

History - Wikipedia
History is the systematic study of the past, focusing primarily on the human past. As an academic discipline, it analyses and interprets evidence to construct narratives about what happened …

World History Encyclopedia
The free online history encyclopedia with fact-checked articles, images, videos, maps, timelines and more; operated as a non-profit organization.

World History Portal | Britannica
4 days ago · Does history really repeat itself, or can we learn from the mistakes of those who came before us? History provides a chronological, statistical, and cultural record of the events, …

History & Culture - National Geographic
Learn the untold stories of human history and the archaeological discoveries that reveal our ancient past. Plus, explore the lived experiences and traditions of diverse cultures and identities.

HistoryNet: Your Authoritative Source for U.S. & World History
Search our archive of 5,000+ features, photo galleries and articles on U.S. & world history, from wars and major events to today's hot topics. Close Subscribe Now