Advertisement
genetics genes genomes and evolution free: Genetics Philip Mark Meneely, Rachel Dawes Hoang, Iruka N. Okeke, Katherine Heston, 2017 Genetics: Genes, Genomes, and Evolution unites evolution, genomics, and genetics in a single narrative approach. It is an approach that provides students with a uniquely flexible and contemporary view of genetics, genomics, and evolution. |
genetics genes genomes and evolution free: Adaptive Evolution of Genes and Genomes Austin L. Hughes, 1999 This valuable book thoroughly examines adaptive evolution at the DNA level while taking a comprehensive look at the research being done in the area. It presents useful cases where signals of adaptive evolution are detected through neutral molecular evolution, providing a powerful strategy for testing the Darwinian hypothesis of natural selection. By bridging the gap between research on molecular and phenotype evolution and contributing to the unification of the biological sciences, this book will especially appeal to researchers and graduate students in the field of evolutionary biology. Also, with its focus on particular protein molecules and on specific domains of these proteins, it will benefit a wider audience of both evolutionary and functional biologists. |
genetics genes genomes and evolution free: Plant Genes, Genomes and Genetics Erich Grotewold, Joseph Chappell, Elizabeth A. Kellogg, 2015-05-26 Plant Genes, Genomes and Genetics provides a comprehensive treatment of all aspects of plant gene expression. Unique in explaining the subject from a plant perspective, it highlights the importance of key processes, many first discovered in plants, that impact how plants develop and interact with the environment. This text covers topics ranging from plant genome structure and the key control points in how genes are expressed, to the mechanisms by which proteins are generated and how their activities are controlled and altered by posttranslational modifications. Written by a highly respected team of specialists in plant biology with extensive experience in teaching at undergraduate and graduate level, this textbook will be invaluable for students and instructors alike. Plant Genes, Genomes and Genetics also includes: specific examples that highlight when and how plants operate differently from other organisms special sections that provide in-depth discussions of particular issues end-of-chapter problems to help students recapitulate the main concepts rich, full-colour illustrations and diagrams clearly showing important processes in plant gene expression a companion website with PowerPoint slides, downloadable figures, and answers to the questions posed in the book Aimed at upper level undergraduates and graduate students in plant biology, this text is equally suited for advanced agronomy and crop science students inclined to understand molecular aspects of organismal phenomena. It is also an invaluable starting point for professionals entering the field of plant biology. |
genetics genes genomes and evolution free: Molecular and Genome Evolution Dan Graur, 2015-01-01 This book describes the driving forces behind the evolutionary process at the molecular and genome levels, the effects of the various molecular mechanisms on the structure of genes, proteins, and genomes, the methodology and the analytical tools involved in dealing with molecular data from an evolutionary perspective, and the logic of evolutionary hypothesis testing. Evolutionary phenomena at the molecular level are detailed in a way that can be understood without much prerequisite knowledge of molecular biology, evolution, or mathematics. Numerous examples that support and clarify the theoretical arguments and methodological discussions are included. |
genetics genes genomes and evolution free: Ancestors in Our Genome Eugene E. Harris, 2014-10-31 The complete DNA molecules comprising the human genome were deciphered two decades ago. With this discovery began a remarkable genomic voyage back in time yielding a new science of human evolution. We are just beginning to unravel our full genomic history and answering age-old questions about how and when we evolved. For the first time, we are finding our ancestors in our genome and gleaning tantalizing clues about our past. Molecular anthropologist Eugene E. Harris now gives us an updated and expanded version of the original Ancestors in Our Genome. Written from the perspective of population genetics, and in simple terms, his book traces human origins back to our earliest human ancestors and explains how our genome has adapted as we spread to colonize new regions on Earth. Harris's book reveals the latest insights into our relationships with our extinct cousins, the Neandertals and Denisovans, and describes where, when and to what extent we mated with them, probing the good and bad consequences of this. |
genetics genes genomes and evolution free: Mitochondrial Genome Evolution , 2012-11-27 Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. This thematic volume features reviews on Mitochondrial genome evolution. - Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences - Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology - This thematic volume features reviews on mitochondrial genome evolution |
genetics genes genomes and evolution free: Decoding the Language of Genetics David Botstein, 2015 This is a book about the conceptual language of genetics. There is a need for special words and terms to deal with some of the essential abstractions in genetics; these are the focus of this book. It is intended to help readers with diverse interests and experience to think about genetic analysis in a more sophisticated and creative way.--Publisher information. |
genetics genes genomes and evolution free: Polyploidy and Genome Evolution Pamela Soltis, Douglas E. Soltis, 2012-10-03 Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences. |
genetics genes genomes and evolution free: Genes and Genomes R.S. Verma, 1998-06-03 The laws of inheritance were considered quite superficial until 1903, when the chromosome theory of heredity was established by Sutton and Boveri. The discovery of the double helix and the genetic code led to our understanding of gene structure and function. For the past quarter of a century, remarkable progress has been made in the characterization of the human genome in order to search for coherent views of genes. The unit of inheritance termed factor or gene, once upon a time thought to be a trivial an imaginary entity, is now perceived clearly as the precise unit of inheritance that has continually deluged us with amazement by its complex identity and behaviour, sometimes bypassing the university of Mendel's law. The aim of the fifth volume, entitled Genes and Genomes, is to cover the topics ranging from the structure of DNA itself to the structure of the complete genome, along with everything in between, encompassing 12 chapters. These chapters relate much of the information accumulated on the role of DNA in the organization of genes and genomes per se. Several distinguished scientists, all pre-eminent authorities in each field to share their expertise. Obviously, since the historical report on the double helix configuration in 1953, voluminous reports on the meteoric advances in genetics have been accumulated, and to cover every account in a single volume format would be a Herculean task. Therefore, only a few topics are chosen, which are of great interest to molecular geneticists. This volume is intended for advanced graduate students who would wish to keep abreast with the most recent trends in genome biology. |
genetics genes genomes and evolution free: Human Evolution Graeme Finlay, 2013-09-12 Brings together new research demonstrating how evidence based on genetic phenomena should end any lingering controversy over human evolution. |
genetics genes genomes and evolution free: Ecological Genomics Christian R Landry, Nadia Aubin-Horth, 2013-11-30 Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation. |
genetics genes genomes and evolution free: Making Sense of Genes Kostas Kampourakis, 2017-03-30 What are genes? What do genes do? These seemingly simple questions are in fact challenging to answer accurately. As a result, there are widespread misunderstandings and over-simplistic answers, which lead to common conceptions widely portrayed in the media, such as the existence of a gene 'for' a particular characteristic or disease. In reality, the DNA we inherit interacts continuously with the environment and functions differently as we age. What our parents hand down to us is just the beginning of our life story. This comprehensive book analyses and explains the gene concept, combining philosophical, historical, psychological and educational perspectives with current research in genetics and genomics. It summarises what we currently know and do not know about genes and the potential impact of genetics on all our lives. Making Sense of Genes is an accessible but rigorous introduction to contemporary genetics concepts for non-experts, undergraduate students, teachers and healthcare professionals. |
genetics genes genomes and evolution free: Evolution after Gene Duplication Katharina Dittmar, David Liberles, 2011-06-09 Gene duplication has long been believed to have played a major role in the rise of biological novelty through evolution of new function and gene expression patterns. The first book to examine gene duplication across all levels of biological organization, Evolution after Gene Duplication presents a comprehensive picture of the mechanistic process by which gene duplication may have played a role in generating biodiversity. Key Features: Explores comparative genomics, genome evolution studies and analysis of multi-gene families such as Hox, globins, olfactory receptors and MHC (immune system) A complete post-genome treatment of the topic originally covered by Ohno's 1970 classic, this volume extends coverage to include the fate of associated regulatory pathways Taps the significant increase in multi-gene family data that has resulted from comparative genomics Comprehensive coverage that includes opposing theoretical viewpoints, comparative genomics data, theoretical and empirical evidence and the role of bioinformatics in the study of gene duplication This up-to-date overview of theory and mathematical models along with practical examples is suitable for scientists across various levels of biology as well as instructors and graduate students. |
genetics genes genomes and evolution free: Genetics Leland Hartwell, 2004 This new edition builds upon the integration of Mendelian and molecular principles, providing students with the links between early genetics understanding and the new molecular discoveries that have changed the way the field of genetics is viewed. |
genetics genes genomes and evolution free: The Conifers: Genomes, Variation and Evolution David B. Neale, Nicholas C. Wheeler, 2019-03-23 This book is the first comprehensive volume on conifers detailing their genomes, variations, and evolution. The book begins with general information about conifers such as taxonomy, geography, reproduction, life history, and social and economic importance. Then topics discussed include the full genome sequence, complex traits, phenotypic and genetic variations, landscape genomics, and forest health and conservation. This book also synthesizes the research included to provide a bigger picture and suggest an evolutionary trajectory. As a large plant family, conifers are an important part of economic botany. The group includes the pines, spruces, firs, larches, yews, junipers, cedars, cypresses, and sequoias. Of the phylum Coniferophyta, conifers typically bear cones and evergreen leaves. Recently, there has been much data available in conifer genomics with the publication of several crop and non-crop genome sequences. In addition to their economic importance, conifers are an important habitat for humans and animals, especially in developing parts of the world. The application of genomics for improving the productivity of conifer crops holds great promise to help provide resources for the most needy in the world. |
genetics genes genomes and evolution free: The Society of Genes Itai Yanai, Martin Lercher, 2016-01-11 Since Dawkins popularized the notion of the selfish gene, the question of how these selfish genes work together to construct an organism remained a mystery. Now, standing atop a wealth of new research, Itai Yanai and Martin Lercher—pioneers in the field of systems biology—provide a vision of how genes cooperate and compete in the struggle for life. |
genetics genes genomes and evolution free: The Pangenome Hervé Tettelin, Duccio Medini, 2020-04-30 This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics. |
genetics genes genomes and evolution free: The Origins of Genome Architecture Michael Lynch, 2007-06 The availability of genomic blueprints for hundreds of species has led to a transformation in biology, encouraging the proliferation of adaptive arguments for the evolution of genomic features. This text explains why the details matter and presents a framework for how the architectural diversity of eukaryotic genomes and genes came to arise. |
genetics genes genomes and evolution free: Bioinformatics for Beginners Supratim Choudhuri, 2018-10-30 Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools provides a coherent and friendly treatment of bioinformatics for any student or scientist within biology who has not routinely performed bioinformatic analysis. The book discusses the relevant principles needed to understand the theoretical underpinnings of bioinformatic analysis and demonstrates, with examples, targeted analysis using freely available web-based software and publicly available databases. Eschewing non-essential information, the work focuses on principles and hands-on analysis, also pointing to further study options. |
genetics genes genomes and evolution free: The Selfish Gene Richard Dawkins, 1989 Science need not be dull and bogged down by jargon, as Richard Dawkins proves in this entertaining look at evolution. The themes he takes up are the concepts of altruistic and selfish behaviour; the genetical definition of selfish interest; the evolution of aggressive behaviour; kinshiptheory; sex ratio theory; reciprocal altruism; deceit; and the natural selection of sex differences. 'Should be read, can be read by almost anyone. It describes with great skill a new face of the theory of evolution.' W.D. Hamilton, Science |
genetics genes genomes and evolution free: Molecular Biology Nancy Craig, Rachel Green, Orna Cohen-Fix, Carol Greider, Gisela Storz, Cynthia Wolberger, 2014-05 The biological world operates on a multitude of scales - from molecules to tissues to organisms to ecosystems. Throughout these myriad levels runs a common thread: the communication and onward passage of information, from cell to cell, from organism to organism and ultimately, from generation to generation. But how does this information come alive to govern the processes that constitute life? The answer lies in the molecular components that cooperate through a series of carefully-regulated processes to bring the information in our genome to life. These components and processes lie at the heart of one of the most fascinating subjects to engage the minds of scientists today: molecular biology. Molecular Biology: Principles of Genome Function, Second Edition, offers a fresh approach to the teaching of molecular biology by focusing on the commonalities that exist between the three kingdoms of life, and discussing the differences between the three kingdoms to offer instructive insights into molecular processes and components. This gives students an accurate depiction of our current understanding of the conserved nature of molecular biology, and the differences that underpin biological diversity. Additionally, an integrated approach demonstrates how certain molecular phenomena have diverse impacts on genome function by presenting them as themes that recur throughout the book, rather than as artificially separated topics As an experimental science, molecular biology requires an appreciation for the approaches taken to yield the information from which concepts and principles are deduced. Experimental Approach panels throughout the text describe research that has been particularly valuable in elucidating difference aspects of molecular biology. Each panel is carefully cross-referenced to the discussion of key molecular biology tools and techniques, which are presented in a dedicated chapter at the end of the book. Molecular Biology further enriches the learning experience with full-color artwork, end-of-chapter questions and summaries, suggested further readings grouped by topic, and an extensive glossary of key terms. Features: A focus on the underlying principles of molecular biology equips students with a robust conceptual framework on which to build their knowledge An emphasis on their commonalities reflects the processes and components that exist between bacteria, archae, and eukaryotes Experimental Approach panels demonstrate the importance of experimental evidence by describing research that has been particularly valuable in the field |
genetics genes genomes and evolution free: Genetics For Dummies Tara Rodden Robinson, Lisa Spock, 2019-12-12 Your no-nonsense guide to genetics With rapid advances in genomic technologies, genetic testing has become a key part of both clinical practice and research. Scientists are constantly discovering more about how genetics plays a role in health and disease, and healthcare providers are using this information to more accurately identify their patients' particular medical needs. Genetic information is also increasingly being used for a wide range of non-clinical purposes, such as exploring one's ancestry. This new edition of Genetics For Dummies serves as a perfect course supplement for students pursuing degrees in the sciences. It also provides science-lovers of all skill levels with easy-to-follow and easy-to-understand information about this exciting and constantly evolving field. This edition includes recent developments and applications in the field of genetics, such as: Whole-genome and whole-exome sequencing Precision medicine and pharmacogenetics Direct-to-consumer genetic testing for health risks Ancestry testing Featuring information on some of the hottest topics in genetics right now, this book makes it easier than ever to wrap your head around this fascinating subject. |
genetics genes genomes and evolution free: Evolution by Gene Duplication Susumu Ohno, 2013-12-11 It is said that necessity is the mother of invention. To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that Ieisure is the mother of cultural improvement. Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that natural selection mere(y tnodifted, while redundanry created. Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus. |
genetics genes genomes and evolution free: A Troublesome Inheritance Nicholas Wade, 2014-05-06 Drawing on startling new evidence from the mapping of the genome, an explosive new account of the genetic basis of race and its role in the human story Fewer ideas have been more toxic or harmful than the idea of the biological reality of race, and with it the idea that humans of different races are biologically different from one another. For this understandable reason, the idea has been banished from polite academic conversation. Arguing that race is more than just a social construct can get a scholar run out of town, or at least off campus, on a rail. Human evolution, the consensus view insists, ended in prehistory. Inconveniently, as Nicholas Wade argues in A Troublesome Inheritance, the consensus view cannot be right. And in fact, we know that populations have changed in the past few thousand years—to be lactose tolerant, for example, and to survive at high altitudes. Race is not a bright-line distinction; by definition it means that the more human populations are kept apart, the more they evolve their own distinct traits under the selective pressure known as Darwinian evolution. For many thousands of years, most human populations stayed where they were and grew distinct, not just in outward appearance but in deeper senses as well. Wade, the longtime journalist covering genetic advances for The New York Times, draws widely on the work of scientists who have made crucial breakthroughs in establishing the reality of recent human evolution. The most provocative claims in this book involve the genetic basis of human social habits. What we might call middle-class social traits—thrift, docility, nonviolence—have been slowly but surely inculcated genetically within agrarian societies, Wade argues. These “values” obviously had a strong cultural component, but Wade points to evidence that agrarian societies evolved away from hunter-gatherer societies in some crucial respects. Also controversial are his findings regarding the genetic basis of traits we associate with intelligence, such as literacy and numeracy, in certain ethnic populations, including the Chinese and Ashkenazi Jews. Wade believes deeply in the fundamental equality of all human peoples. He also believes that science is best served by pursuing the truth without fear, and if his mission to arrive at a coherent summa of what the new genetic science does and does not tell us about race and human history leads straight into a minefield, then so be it. This will not be the last word on the subject, but it will begin a powerful and overdue conversation. |
genetics genes genomes and evolution free: Genetic Analysis Philip Mark Meneely, 2014 With its unique integration of genetics and molecular biology, this text probes fascinating questions that explore how our understanding of key genetic phenomena can be used to understand biological systems. Opening with a brief overview of key genetic principles, model organisms, and epigenetics, the book goes on to explore the use of gene mutations, the analysis of gene expression and activity, a discussion of the genetic structure of natural populations, and more. |
genetics genes genomes and evolution free: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy. |
genetics genes genomes and evolution free: Replacing Darwin Nathaniel Jeanson, 2017-10-09 If Darwin were to examine the evidence today using modern science, would his conclusions be the same? Charles Darwin’s On the Origin of Species, published over 150 years ago, is considered one of history’s most influential books and continues to serve as the foundation of thought for evolutionary biology. Since Darwin’s time, however, new fields of science have immerged that simply give us better answers to the question of origins. With a Ph.D. in cell and developmental biology from Harvard University, Dr. Nathaniel Jeanson is uniquely qualified to investigate what genetics reveal about origins. The Origins Puzzle Comes Together If the science surrounding origins were a puzzle, Darwin would have had fewer than 15% of the pieces to work with when he developed his theory of evolution. We now have a much greater percentage of the pieces because of modern scientific research. As Dr. Jeanson puts the new pieces together, a whole new picture emerges, giving us a testable, predictive model to explain the origin of species. A New Scientific Revolution Begins Darwin’s theory of evolution may be one of science’s “sacred cows,” but genetics research is proving it wrong. Changing an entrenched narrative, even if it’s wrong, is no easy task. Replacing Darwin asks you to consider the possibility that, based on genetics research, our origins are more easily understood in the context of . . . In the beginning . . . God, with the timeline found in the biblical narrative of Genesis. There is a better answer to the origins debate than what we have been led to believe. Let the revolution begin! |
genetics genes genomes and evolution free: Molecular Evolution Roderick D.M. Page, Edward C. Holmes, 2009-07-14 The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility. |
genetics genes genomes and evolution free: The Book of Genes & Genomes Huntington Willard, Susanne Haga, 2017-01-08 The Book of Genes & Genomes presents a concise overview of the advances in genetics and genomics and provide the unfamiliar reader with a succinct description of many of the applications and implications of this field. Given the substantial investment in genetics and genomics over the past several decades and the many recent discoveries and developments, this book will help the reader begin to understand the importance of genetics and genomics to us all. This exciting new title includes information on how genetics and genomics has advanced our understanding of health and medicine, evolution, and biology, as well as how they are pushing the boundaries of ethics and social values. |
genetics genes genomes and evolution free: The Gene Siddhartha Mukherjee, 2016-05-17 The #1 NEW YORK TIMES Bestseller The basis for the PBS Ken Burns Documentary The Gene: An Intimate History Now includes an excerpt from Siddhartha Mukherjee’s new book Song of the Cell! From the Pulitzer Prize–winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle). “Sid Mukherjee has the uncanny ability to bring together science, history, and the future in a way that is understandable and riveting, guiding us through both time and the mystery of life itself.” —Ken Burns “Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for his virtuoso performance in The Gene: An Intimate History, in which he braids science, history, and memoir into an epic with all the range and biblical thunder of Paradise Lost” (The New York Times). In this biography Mukherjee brings to life the quest to understand human heredity and its surprising influence on our lives, personalities, identities, fates, and choices. “Mukherjee expresses abstract intellectual ideas through emotional stories…[and] swaddles his medical rigor with rhapsodic tenderness, surprising vulnerability, and occasional flashes of pure poetry” (The Washington Post). Throughout, the story of Mukherjee’s own family—with its tragic and bewildering history of mental illness—reminds us of the questions that hang over our ability to translate the science of genetics from the laboratory to the real world. In riveting and dramatic prose, he describes the centuries of research and experimentation—from Aristotle and Pythagoras to Mendel and Darwin, from Boveri and Morgan to Crick, Watson and Franklin, all the way through the revolutionary twenty-first century innovators who mapped the human genome. “A fascinating and often sobering history of how humans came to understand the roles of genes in making us who we are—and what our manipulation of those genes might mean for our future” (Milwaukee Journal-Sentinel), The Gene is the revelatory and magisterial history of a scientific idea coming to life, the most crucial science of our time, intimately explained by a master. “The Gene is a book we all should read” (USA TODAY). |
genetics genes genomes and evolution free: Environmental Epigenetics L. Joseph Su, Tung-chin Chiang, 2015-05-18 This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. |
genetics genes genomes and evolution free: Analysis of Genes and Genomes Richard J. Reece, 2004 Analysis of GenesA and Genomes is a clear introduction to the theoretical and practical basis of genetic engineering, gene cloning and molecular biology. All aspects of genetic engineering in the post-genomic era are covered, beginning with the basics of DNA structure and DNA metabolism. Using an example-driven approach, the fundamentals of creating mutations in DNA, cloning in bacteria, yeast, plants and animals are all clearly presented. Newer technologies such as DNA macro and macroarrays, proteomics and bioinformatics are introduced in later chapters helping students to analyse and understand the vast amounts of data that are now available through genome sequence and function projects. Aimed at students with a basic knowledge of the molecular side of biology, this will be invaluable to those looking to better understand the complexities and capabilities of these important new technologies. A modern post-genome era introduction to key techniques used in genetic engineering. An example driven past-to-present approach to allow the experiments of today to be placed in an historical context Beautifully illustrated in full colour throughout. Associated website including updates, additional content and illustrations |
genetics genes genomes and evolution free: Biosocial Surveys National Research Council, Division of Behavioral and Social Sciences and Education, Committee on Population, Committee on Advances in Collecting and Utilizing Biological Indicators and Genetic Information in Social Science Surveys, 2008-01-06 Biosocial Surveys analyzes the latest research on the increasing number of multipurpose household surveys that collect biological data along with the more familiar interviewerâ€respondent information. This book serves as a follow-up to the 2003 volume, Cells and Surveys: Should Biological Measures Be Included in Social Science Research? and asks these questions: What have the social sciences, especially demography, learned from those efforts and the greater interdisciplinary communication that has resulted from them? Which biological or genetic information has proven most useful to researchers? How can better models be developed to help integrate biological and social science information in ways that can broaden scientific understanding? This volume contains a collection of 17 papers by distinguished experts in demography, biology, economics, epidemiology, and survey methodology. It is an invaluable sourcebook for social and behavioral science researchers who are working with biosocial data. |
genetics genes genomes and evolution free: A History of Genetics Alfred Henry Sturtevant, 2001 In the small “Fly Room†at Columbia University, T.H. Morgan and his students, A.H. Sturtevant, C.B. Bridges, and H.J. Muller, carried out the work that laid the foundations of modern, chromosomal genetics. The excitement of those times, when the whole field of genetics was being created, is captured in this book, written in 1965 by one of those present at the beginning. His account is one of the few authoritative, analytic works on the early history of genetics. This attractive reprint is accompanied by a website, http://www.esp.org/books/sturt/history/ offering full-text versions of the key papers discussed in the book, including the world's first genetic map. |
genetics genes genomes and evolution free: An A to Z of DNA Science Jeffre L. Witherly, Galen P. Perry, Darryl L. Leja, 2001 Defines over 200 terms dealing with the language of genes, genomes, DNA, biotechnology, and heredity--Publisher marketing. |
genetics genes genomes and evolution free: The Pangenome Hervé Tettelin, Duccio Medini, 2020-10-09 This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book's respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors. |
genetics genes genomes and evolution free: Genome Matt Ridley, 2013-03-26 “Ridley leaps from chromosome to chromosome in a handy summation of our ever increasing understanding of the roles that genes play in disease, behavior, sexual differences, and even intelligence. . . . . He addresses not only the ethical quandaries faced by contemporary scientists but the reductionist danger in equating inheritability with inevitability.” — The New Yorker The genome's been mapped. But what does it mean? Matt Ridley’s Genome is the book that explains it all: what it is, how it works, and what it portends for the future Arguably the most significant scientific discovery of the new century, the mapping of the twenty-three pairs of chromosomes that make up the human genome raises almost as many questions as it answers. Questions that will profoundly impact the way we think about disease, about longevity, and about free will. Questions that will affect the rest of your life. Genome offers extraordinary insight into the ramifications of this incredible breakthrough. By picking one newly discovered gene from each pair of chromosomes and telling its story, Matt Ridley recounts the history of our species and its ancestors from the dawn of life to the brink of future medicine. From Huntington's disease to cancer, from the applications of gene therapy to the horrors of eugenics, Ridley probes the scientific, philosophical, and moral issues arising as a result of the mapping of the genome. It will help you understand what this scientific milestone means for you, for your children, and for humankind. |
genetics genes genomes and evolution free: Genetic Entropy John C. Sanford, 2014 In this text, Sanford, a retired Cornell professor, shows that the Primary Axiom--the foundational evolutionary premise that life is merely the result of mutations and natural selection--is false. He strongly refutes the Darwinian concept that man is just the result of a random and pointless natural process. |
genetics genes genomes and evolution free: Genome Chaos Henry H. Heng, 2025-06-01 Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine, Second Edition transports readers from Mendelian genetics to 4D genomics, building a case for genes and genomes as distinct biological entities where the genome, rather than individual genes, defines system-level inheritance and represents a clear unit of selection for macroevolution. In this thought-provoking text, Dr. Henry Heng invigorates fresh discussions in Genome Architecture Theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine.In this timely new edition, Dr. Heng fully embraces the integration of system information with genome-mediated evolutionary mechanisms, and supports this framework with recent findings and growing, interdisciplinary research. Ten evidence-based chapters discuss 4D genomics, genes and genomes as distinct biological entities, genome chaos and cellular macroevolution, karyotype coding and fuzzy inheritance, as well as an entirely novel model of evolution driven by information flow, and more. Brand-new chapters consider the creation and maintenance of system information for complexity and biodiversity, as well as modes of analyzing information-based and historically contingent evolutionary framework. This synthesis offers a revolutionary paradigm of evolutionary theory. It also hypothesizes about how information flow, matter arrangement, and energy interact. - Bridges basic research and clinical applications, providing a foundation for re-examining the results of large-scale -omics studies and precision medicine - Gathers the most pressing questions in genomics, cytogenomics, and evolution - Proposes a novel genome and information-based evolutionary theory that unites the study of physical, chemical, and biological mechanisms within organismal systems - Contains ten evidence-based chapters that discuss karyotype coding, function of sex, natural information self-creation, and evolution as platform for both innovation and conservation |
genetics genes genomes and evolution free: Animal Genomics Bhanu P. Chowdhary, 2003 This publication provides an update on the current status of gene maps in different livestock and pet/companion animal species. The findings summarized in species specific commentaries and original articles testify the rapid advances made in the field of animal genomics. Of significant interest is the fact that current investigations are providing headways for two important and exciting research fronts: targeted high-resolution mapping leading to the application of genomic information in addressing questions of economic and biological significance in animals, and the initiation of whole genome sequencing projects for some of the animal species. Like in humans and mice, this will set the stage for a new level of research and real time complex analysis of the genomes of these species. Animal Genomics signifies the beginning of a new era in this field and celebrates the achievements of the past 20 years of genomics research. It will be of special interest to researchers involved in genome analysis - both gross chromosomal as well as molecular - in various animal species, and to comparative and evolutionary geneticists. |
Genetics - Wikipedia
Genetic processes work in combination with an organism's environment and experiences to influence development and behavior, often referred to as nature versus nurture. The …
Genetics | History, Biology, Timeline, & Facts | Britannica
6 days ago · Genetics, study of heredity in general and of genes in particular. Genetics forms one of the central pillars of biology and overlaps with many other areas, such as …
GENETICS 101 - Understanding Genetics - NCBI Bookshelf
Jul 8, 2009 · This chapter provides fundamental information about basic genetics concepts, including cell structure, the molecular and biochemical basis of disease, major …
Introduction to Genetics - Basic Biology
Aug 31, 2020 · This introduction to genetics takes you through the basic components of genetics such as DNA, genes, chromosomes and genetic inheritance. Genetics is built around …
Genetics Basics | Genomics and Your Health | CDC
May 15, 2024 · Genes are specific sections of DNA that have instructions for making proteins. Proteins make up most of the parts of your body and make your body work the right way. …