Advertisement
functional verification basics: Principles of Functional Verification Andreas Meyer, 2003-12-05 As design complexity in chips and devices continues to rise, so, too, does the demand for functional verification. Principles of Functional Verification is a hands-on, practical text that will help train professionals in the field of engineering on the methodology and approaches to verification.In practice, the architectural intent of a device is necessarily abstract. The implementation process, however, must define the detailed mechanisms to achieve the architectural goals. Based on a decade of experience, Principles of Functional Verification intends to pinpoint the issues, provide strategies to solve the issues, and present practical applications for narrowing the gap between architectural intent and implementation. The book is divided into three parts, each building upon the chapters within the previous part. Part One addresses why functional verification is necessary, its definition and goals. In Part Two, the heart of the methodology and approaches to solving verification issues are examined. Each chapter in this part ends with exercises to apply what was discussed in the chapter. Part Three looks at practical applications, discussing project planning, resource requirements, and costs. Each chapter throughout all three parts will open with Key Objectives, focal points the reader can expect to review in the chapter.* Takes a holistic approach to verification issues* Approach is not restricted to one language* Discussed the verification process, not just how to use the verification language |
functional verification basics: Writing Testbenches: Functional Verification of HDL Models Janick Bergeron, 2012-12-06 mental improvements during the same period. What is clearly needed in verification techniques and technology is the equivalent of a synthesis productivity breakthrough. In the second edition of Writing Testbenches, Bergeron raises the verification level of abstraction by introducing coverage-driven constrained-random transaction-level self-checking testbenches all made possible through the introduction of hardware verification languages (HVLs), such as e from Verisity and OpenVera from Synopsys. The state-of-art methodologies described in Writing Test benches will contribute greatly to the much-needed equivalent of a synthesis breakthrough in verification productivity. I not only highly recommend this book, but also I think it should be required reading by anyone involved in design and verification of today's ASIC, SoCs and systems. Harry Foster Chief Architect Verplex Systems, Inc. xviii Writing Testbenches: Functional Verification of HDL Models PREFACE If you survey hardware design groups, you will learn that between 60% and 80% of their effort is now dedicated to verification. |
functional verification basics: ASIC/SoC Functional Design Verification Ashok B. Mehta, 2017-06-28 This book describes in detail all required technologies and methodologies needed to create a comprehensive, functional design verification strategy and environment to tackle the toughest job of guaranteeing first-pass working silicon. The author first outlines all of the verification sub-fields at a high level, with just enough depth to allow an engineer to grasp the field before delving into its detail. He then describes in detail industry standard technologies such as UVM (Universal Verification Methodology), SVA (SystemVerilog Assertions), SFC (SystemVerilog Functional Coverage), CDV (Coverage Driven Verification), Low Power Verification (Unified Power Format UPF), AMS (Analog Mixed Signal) verification, Virtual Platform TLM2.0/ESL (Electronic System Level) methodology, Static Formal Verification, Logic Equivalency Check (LEC), Hardware Acceleration, Hardware Emulation, Hardware/Software Co-verification, Power Performance Area (PPA) analysis on a virtual platform, Reuse Methodology from Algorithm/ESL to RTL, and other overall methodologies. |
functional verification basics: Principles of Verifiable RTL Design Lionel Bening, Harry D. Foster, 2007-05-08 System designers, computer scientists and engineers have c- tinuously invented and employed notations for modeling, speci- ing, simulating, documenting, communicating, teaching, verifying and controlling the designs of digital systems. Initially these s- tems were represented via electronic and fabrication details. F- lowing C. E. Shannon’s revelation of 1948, logic diagrams and Boolean equations were used to represent digital systems in a fa- ion that de-emphasized electronic and fabrication detail while revealing logical behavior. A small number of circuits were made available to remove the abstraction of these representations when it was desirable to do so. As system complexity grew, block diagrams, timing charts, sequence charts, and other graphic and symbolic notations were found to be useful in summarizing the gross features of a system and describing how it operated. In addition, it always seemed necessary or appropriate to augment these documents with lengthy verbal descriptions in a natural language. While each notation was, and still is, a perfectly valid means of expressing a design, lack of standardization, conciseness, and f- mal definitions interfered with communication and the understa- ing between groups of people using different notations. This problem was recognized early and formal languages began to evolve in the 1950s when I. S. Reed discovered that flip-flop input equations were equivalent to a register transfer equation, and that xvi tor-like notation. Expanding these concepts Reed developed a no- tion that became known as a Register Transfer Language (RTL). |
functional verification basics: Advanced Verification Techniques Leena Singh, Leonard Drucker, Neyaz Khan, 2004-06-08 As chip size and complexity continues to grow exponentially, the challenges of functional verification are becoming a critical issue in the electronics industry. It is now commonly heard that logical errors missed during functional verification are the most common cause of chip re-spins, and that the costs associated with functional verification are now outweighing the costs of chip design. To cope with these challenges engineers are increasingly relying on new design and verification methodologies and languages. Transaction-based design and verification, constrained random stimulus generation, functional coverage analysis, and assertion-based verification are all techniques that advanced design and verification teams routinely use today. Engineers are also increasingly turning to design and verification models based on C/C++ and SystemC in order to build more abstract, higher performance hardware and software models and to escape the limitations of RTL HDLs. This new book, Advanced Verification Techniques, provides specific guidance for these advanced verification techniques. The book includes realistic examples and shows how SystemC and SCV can be applied to a variety of advanced design and verification tasks. - Stuart Swan |
functional verification basics: SystemVerilog for Verification Chris Spear, Greg Tumbush, 2012-02-14 Based on the highly successful second edition, this extended edition of SystemVerilog for Verification: A Guide to Learning the Testbench Language Features teaches all verification features of the SystemVerilog language, providing hundreds of examples to clearly explain the concepts and basic fundamentals. It contains materials for both the full-time verification engineer and the student learning this valuable skill. In the third edition, authors Chris Spear and Greg Tumbush start with how to verify a design, and then use that context to demonstrate the language features, including the advantages and disadvantages of different styles, allowing readers to choose between alternatives. This textbook contains end-of-chapter exercises designed to enhance students’ understanding of the material. Other features of this revision include: New sections on static variables, print specifiers, and DPI from the 2009 IEEE language standard Descriptions of UVM features such as factories, the test registry, and the configuration database Expanded code samples and explanations Numerous samples that have been tested on the major SystemVerilog simulators SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, Third Edition is suitable for use in a one-semester SystemVerilog course on SystemVerilog at the undergraduate or graduate level. Many of the improvements to this new edition were compiled through feedback provided from hundreds of readers. |
functional verification basics: Comprehensive Functional Verification Bruce Wile, John Goss, Wolfgang Roesner, 2005-05-26 One of the biggest challenges in chip and system design is determining whether the hardware works correctly. That is the job of functional verification engineers and they are the audience for this comprehensive text from three top industry professionals.As designs increase in complexity, so has the value of verification engineers within the hardware design team. In fact, the need for skilled verification engineers has grown dramatically--functional verification now consumes between 40 and 70% of a project's labor, and about half its cost. Currently there are very few books on verification for engineers, and none that cover the subject as comprehensively as this text. A key strength of this book is that it describes the entire verification cycle and details each stage. The organization of the book follows the cycle, demonstrating how functional verification engages all aspects of the overall design effort and how individual cycle stages relate to the larger design process. Throughout the text, the authors leverage their 35 plus years experience in functional verification, providing examples and case studies, and focusing on the skills, methods, and tools needed to complete each verification task. - Comprehensive overview of the complete verification cycle - Combines industry experience with a strong emphasis on functional verification fundamentals - Includes real-world case studies |
functional verification basics: Open Verification Methodology Cookbook Mark Glasser, 2009-07-24 Functional verification is an art as much as a science. It requires not only creativity and cunning, but also a clear methodology to approach the problem. The Open Verification Methodology (OVM) is a leading-edge methodology for verifying designs at multiple levels of abstraction. It brings together ideas from electrical, systems, and software engineering to provide a complete methodology for verifying large scale System-on-Chip (SoC) designs. OVM defines an approach for developing testbench architectures so they are modular, configurable, and reusable. This book is designed to help both novice and experienced verification engineers master the OVM through extensive examples. It describes basic verification principles and explains the essentials of transaction-level modeling (TLM). It leads readers from a simple connection of a producer and a consumer through complete self-checking testbenches. It explains construction techniques for building configurable, reusable testbench components and how to use TLM to communicate between them. Elements such as agents and sequences are explained in detail. |
functional verification basics: Top-Down Digital VLSI Design Hubert Kaeslin, 2014-12-07 Top-Down VLSI Design: From Architectures to Gate-Level Circuits and FPGAs represents a unique approach to learning digital design. Developed from more than 20 years teaching circuit design, Doctor Kaeslin's approach follows the natural VLSI design flow and makes circuit design accessible for professionals with a background in systems engineering or digital signal processing. It begins with hardware architecture and promotes a system-level view, first considering the type of intended application and letting that guide your design choices. Doctor Kaeslin presents modern considerations for handling circuit complexity, throughput, and energy efficiency while preserving functionality. The book focuses on application-specific integrated circuits (ASICs), which along with FPGAs are increasingly used to develop products with applications in telecommunications, IT security, biomedical, automotive, and computer vision industries. Topics include field-programmable logic, algorithms, verification, modeling hardware, synchronous clocking, and more. - Demonstrates a top-down approach to digital VLSI design. - Provides a systematic overview of architecture optimization techniques. - Features a chapter on field-programmable logic devices, their technologies and architectures. - Includes checklists, hints, and warnings for various design situations. - Emphasizes design flows that do not overlook important action items and which include alternative options when planning the development of microelectronic circuits. |
functional verification basics: Hardware Verification with System Verilog Mike Mintz, Robert Ekendahl, 2007-05-03 This is the second of our books designed to help the professional verifier manage complexity. This time, we have responded to a growing interest not only in object-oriented programming but also in SystemVerilog. The writing of this second handbook has been just another step in an ongoing masochistic endeavor to make your professional lives as painfree as possible. The authors are not special people. We have worked in several companies, large and small, made mistakes, and generally muddled through our work. There are many people in the industry who are smarter than we are, and many coworkers who are more experienced. However, we have a strong desire to help. We have been in the lab when we bring up the chips fresh from the fab, with customers and sales breathing down our necks. We’ve been through software 1 bring-up and worked on drivers that had to work around bugs in production chips. What we feel makes us unique is our combined broad experience from both the software and hardware worlds. Mike has over 20 years of experience from the software world that he applies in this book to hardware verification. Robert has over 12 years of experience with hardware verification, with a focus on environments and methodology. |
functional verification basics: A Roadmap for Formal Property Verification Pallab Dasgupta, 2007-01-19 Integrating formal property verification (FPV) into an existing design process raises several interesting questions. This book develops the answers to these questions and fits them into a roadmap for formal property verification – a roadmap that shows how to glue FPV technology into the traditional validation flow. The book explores the key issues in this powerful technology through simple examples that mostly require no background on formal methods. |
functional verification basics: Formal Verification Erik Seligman, Tom Schubert, M V Achutha Kiran Kumar, 2023-05-26 Formal Verification: An Essential Toolkit for Modern VLSI Design, Second Edition presents practical approaches for design and validation, with hands-on advice to help working engineers integrate these techniques into their work. Formal Verification (FV) enables a designer to directly analyze and mathematically explore the quality or other aspects of a Register Transfer Level (RTL) design without using simulations. This can reduce time spent validating designs and more quickly reach a final design for manufacturing. Building on a basic knowledge of SystemVerilog, this book demystifies FV and presents the practical applications that are bringing it into mainstream design and validation processes. Every chapter in the second edition has been updated to reflect evolving FV practices and advanced techniques. In addition, a new chapter, Formal Signoff on Real Projects, provides guidelines for implementing signoff quality FV, completely replacing some simulation tasks with significantly more productive FV methods. After reading this book, readers will be prepared to introduce FV in their organization to effectively deploy FV techniques that increase design and validation productivity. |
functional verification basics: Design Verification with E Samir Palnitkar, 2004 As part of the Modern Semiconductor Design series, this book details a broad range of e-based topics including modelling, constraint-driven test generation, functional coverage and assertion checking. |
functional verification basics: SAT-Based Scalable Formal Verification Solutions Malay Ganai, Aarti Gupta, 2007-05-26 Functional verification has become an important aspect of the chip design process. Significant resources, both in industry and academia, are devoted to the design complexity and verification endeavors. SAT-Based Scalable Formal Verification Solutions discusses in detail several of the latest and interesting scalable SAT-based techniques including: Hybrid SAT Solver, Customized Bounded/Unbounded Model Checking, Distributed Model Checking, Proofs and Proof-based Abstraction Methods, Verification of Embedded Memory System & Multi-clock Systems, and Synthesis for Verification Paradigm. These techniques have been designed and implemented in a verification platform Verisol (formally called DiVer) and have been used successfully in industry. This book provides algorithmic details and engineering insights into devising scalable approaches for an effective realization. It also includes the authors’ practical experiences and recommendations in verifying the large industry designs using VeriSol. The book is primarily written for researchers, scientists, and verification engineers who would like to gain an in-depth understanding of scalable SAT-based verification techniques. The book will also be of interest for CAD tool developers who would like to incorporate various SAT-based advanced techniques in their products. |
functional verification basics: Introduction to SystemVerilog Ashok B. Mehta, 2021-07-06 This book provides a hands-on, application-oriented guide to the entire IEEE standard 1800 SystemVerilog language. Readers will benefit from the step-by-step approach to learning the language and methodology nuances, which will enable them to design and verify complex ASIC/SoC and CPU chips. The author covers the entire spectrum of the language, including random constraints, SystemVerilog Assertions, Functional Coverage, Class, checkers, interfaces, and Data Types, among other features of the language. Written by an experienced, professional end-user of ASIC/SoC/CPU and FPGA designs, this book explains each concept with easy to understand examples, simulation logs and applications derived from real projects. Readers will be empowered to tackle the complex task of multi-million gate ASIC designs. Provides comprehensive coverage of the entire IEEE standard SystemVerilog language; Covers important topics such as constrained random verification, SystemVerilog Class, Assertions, Functional coverage, data types, checkers, interfaces, processes and procedures, among other language features; Uses easy to understand examples and simulation logs; examples are simulatable and will be provided online; Written by an experienced, professional end-user of ASIC/SoC/CPU and FPGA designs. This is quite a comprehensive work. It must have taken a long time to write it. I really like that the author has taken apart each of the SystemVerilog constructs and talks about them in great detail, including example code and simulation logs. For example, there is a chapter dedicated to arrays, and another dedicated to queues - that is great to have! The Language Reference Manual (LRM) is quite dense and difficult to use as a text for learning the language. This book explains semantics at a level of detail that is not possible in an LRM. This is the strength of the book. This will be an excellent book for novice users and as a handy reference for experienced programmers. Mark Glasser Cerebras Systems |
functional verification basics: Rapid System Prototyping with FPGAs R. C. Cofer, Benjamin F. Harding, 2011-03-31 The push to move products to market as quickly and cheaply as possible is fiercer than ever, and accordingly, engineers are always looking for new ways to provide their companies with the edge over the competition. Field-Programmable Gate Arrays (FPGAs), which are faster, denser, and more cost-effective than traditional programmable logic devices (PLDs), are quickly becoming one of the most widespread tools that embedded engineers can utilize in order to gain that needed edge. FPGAs are especially popular for prototyping designs, due to their superior speed and efficiency. This book hones in on that rapid prototyping aspect of FPGA use, showing designers exactly how they can cut time off production cycles and save their companies money drained by costly mistakes, via prototyping designs with FPGAs first. Reading it will take a designer with a basic knowledge of implementing FPGAs to the next-level of FPGA use because unlike broad beginner books on FPGAs, this book presents the required design skills in a focused, practical, example-oriented manner. - In-the-trenches expert authors assure the most applicable advice to practicing engineers - Dual focus on successfully making critical decisions and avoiding common pitfalls appeals to engineers pressured for speed and perfection - Hardware and software are both covered, in order to address the growing trend toward cross-pollination of engineering expertise |
functional verification basics: SystemVerilog For Design Stuart Sutherland, Simon Davidmann, Peter Flake, 2013-12-01 SystemVerilog is a rich set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language (Verilog HDL). These extensions address two major aspects of HDL based design. First, modeling very large designs with concise, accurate, and intuitive code. Second, writing high-level test programs to efficiently and effectively verify these large designs. This book, SystemVerilog for Design, addresses the first aspect of the SystemVerilog extensions to Verilog. Important modeling features are presented, such as two-state data types, enumerated types, user-defined types, structures, unions, and interfaces. Emphasis is placed on the proper usage of these enhancements for simulation and synthesis. A companion to this book, SystemVerilog for Verification, covers the second aspect of SystemVerilog. |
functional verification basics: SystemVerilog Assertions and Functional Coverage Ashok B. Mehta, 2018-04-22 This book provides a hands-on, application-oriented guide to the language and methodology of both SystemVerilog Assertions and SystemVerilog Functional Coverage. Readers will benefit from the step-by-step approach to functional hardware verification using SystemVerilog Assertions and Functional Coverage, which will enable them to uncover hidden and hard to find bugs, point directly to the source of the bug, provide for a clean and easy way to model complex timing checks and objectively answer the question ‘have we functionally verified everything’. Written by a professional end-user of ASIC/SoC/CPU and FPGA design and Verification, this book explains each concept with easy to understand examples, simulation logs and applications derived from real projects. Readers will be empowered to tackle the modeling of complex checkers for functional verification, thereby drastically reducing their time to design and debug. This updated second edition addresses the latest functional set released in IEEE-1800 (2012) LRM, including numerous additional operators and features. Additionally, many of the Concurrent Assertions/Operators explanations are enhanced, with the addition of more examples and figures. · Covers in its entirety the latest IEEE-1800 2012 LRM syntax and semantics; · Covers both SystemVerilog Assertions and SystemVerilog Functional Coverage language and methodologies; · Provides practical examples of the what, how and why of Assertion Based Verification and Functional Coverage methodologies; · Explains each concept in a step-by-step fashion and applies it to a practical real life example; · Includes 6 practical LABs that enable readers to put in practice the concepts explained in the book. |
functional verification basics: Rigorous Software Development José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, Simão Melo de Sousa, 2011-01-04 The use of mathematical methods in the development of software is essential when reliable systems are sought; in particular they are now strongly recommended by the official norms adopted in the production of critical software. Program Verification is the area of computer science that studies mathematical methods for checking that a program conforms to its specification. This text is a self-contained introduction to program verification using logic-based methods, presented in the broader context of formal methods for software engineering. The idea of specifying the behaviour of individual software components by attaching contracts to them is now a widely followed approach in program development, which has given rise notably to the development of a number of behavioural interface specification languages and program verification tools. A foundation for the static verification of programs based on contract-annotated routines is laid out in the book. These can be independently verified, which provides a modular approach to the verification of software. The text assumes only basic knowledge of standard mathematical concepts that should be familiar to any computer science student. It includes a self-contained introduction to propositional logic and first-order reasoning with theories, followed by a study of program verification that combines theoretical and practical aspects - from a program logic (a variant of Hoare logic for programs containing user-provided annotations) to the use of a realistic tool for the verification of C programs (annotated using the ACSL specification language), through the generation of verification conditions and the static verification of runtime errors. |
functional verification basics: Hardware Verification with C++ Mike Mintz, Robert Ekendahl, 2006-12-11 Describes a small verification library with a concentration on user adaptability such as re-useable components, portable Intellectual Property, and co-verification. Takes a realistic view of reusability and distills lessons learned down to a tool box of techniques and guidelines. |
functional verification basics: Introduction to VLSI Design Flow Sneh Saurabh, 2023-06-15 Chip designing is a complex task that requires an in-depth understanding of VLSI design flow, skills to employ sophisticated design tools, and keeping pace with the bleeding-edge semiconductor technologies. This lucid textbook is focused on fulfilling these requirements for students, as well as a refresher for professionals in the industry. It helps the user develop a holistic view of the design flow through a well-sequenced set of chapters on logic synthesis, verification, physical design, and testing. Illustrations and pictorial representations have been used liberally to simplify the explanation. Additionally, each chapter has a set of activities that can be performed using freely available tools and provide hands-on experience with the design tools. Review questions and problems are given at the end of each chapter to revise the concepts. Recent trends and references are listed at the end of each chapter for further reading. |
functional verification basics: Verification Techniques for System-Level Design Masahiro Fujita, Indradeep Ghosh, Mukul Prasad, 2010-07-27 This book will explain how to verify SoC (Systems on Chip) logic designs using formal and semiformal verification techniques. The critical issue to be addressed is whether the functionality of the design is the one that the designers intended. Simulation has been used for checking the correctness of SoC designs (as in functional verification), but many subtle design errors cannot be caught by simulation. Recently, formal verification, giving mathematical proof of the correctness of designs, has been gaining popularity.For higher design productivity, it is essential to debug designs as early as possible, which this book facilitates. This book covers all aspects of high-level formal and semiformal verification techniques for system level designs.• First book that covers all aspects of formal and semiformal, high-level (higher than RTL) design verification targeting SoC designs.• Formal verification of high-level designs (RTL or higher).• Verification techniques are discussed with associated system-level design methodology. |
functional verification basics: A Practical Guide to Adopting the Universal Verification Methodology (UVM) Second Edition Hannibal Height, 2012-12-18 With both cookbook-style examples and in-depth verification background, novice and expert verification engineers will find information to ease their adoption of this emerging Accellera standard. |
functional verification basics: Formal Hardware Verification Thomas Kropf, 1997-08-27 This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given. |
functional verification basics: Professional Verification Paul Wilcox, 2004-05-13 Professional Verification is a guide to advanced functional verification in the nanometer era. It presents the best practices in functional verification used today and provides insights on how to solve the problems that verification teams face. Professional Verification is based on the experiences of advanced verification teams throughout the industry, along with work done at Cadence Design Systems. Professional Verification presents a complete and detailed Unified Verification Methodology based on the best practices in use today. It also addresses topics important to those doing advanced functional verification, such as assertions, functional coverage, formal verification, and reactive testbenches. |
functional verification basics: A Practical Guide for SystemVerilog Assertions Srikanth Vijayaraghavan, Meyyappan Ramanathan, 2006-07-04 SystemVerilog language consists of three very specific areas of constructs -- design, assertions and testbench. Assertions add a whole new dimension to the ASIC verification process. Assertions provide a better way to do verification proactively. Traditionally, engineers are used to writing verilog test benches that help simulate their design. Verilog is a procedural language and is very limited in capabilities to handle the complex Asic's built today. SystemVerilog assertions (SVA) are a declarative and temporal language that provides excellent control over time and parallelism. This provides the designers a very strong tool to solve their verification problems. While the language is built solid, the thinking is very different from the user's perspective when compared to standard verilog language. The concept is still very new and there is not enough expertise in the field to adopt this methodology and be successful. While the language has been defined very well, there is no practical guide that shows how to use the language to solve real verification problems. This book will be the practical guide that will help people to understand this new methodology. Today's SoC complexity coupled with time-to-market and first-silicon success pressures make assertion based verification a requirement and this book points the way to effective use of assertions. Satish S. Iyengar, Director, ASIC Engineering, Crimson Microsystems, Inc. This book benefits both the beginner and the more advanced users of SystemVerilog Assertions (SVA). First by introducing the concept of Assertion Based Verification (ABV) in a simple to understand way, then by discussing the myriad of ideas in a broader scope that SVA can accommodate. The many real life examples, provided throughout the book, are especially useful. Irwan Sie, Director, IC Design, ESS Technology, Inc. SystemVerilogAssertions is a new language that can find and isolate bugs early in the design cycle. This book shows how to verify complex protocols and memories using SVA with seeral examples. This book is a good reference guide for both design and verification engineers. Derick Lin, Senior Director, Engineering, Airgo Networks, Inc. |
functional verification basics: Hardware Design Verification William K. C. Lam, 2005 The Practical, Start-to-Finish Guide to Modern Digital Design Verification As digital logic designs grow larger and more complex, functional verification has become the number one bottleneck in the design process. Reducing verification time is crucial to project success, yet many practicing engineers have had little formal training in verification, and little exposure to the newest solutions.Hardware Design Verificationsystematically presents today's most valuable simulation-based and formal verification techniques, helping test and design engineers choose the best approach for each project, quickly gain confidence in their designs, and move into fabrication far more rapidly. College students will find that coverage of verification principles and common industry practices will help them prepare for jobs as future verification engineers. Author William K. Lam, one of the world's leading experts in design verification, is a recent winner of the Chairman's Award for Innovation, Sun Microsystems' most prestigious technical achievement award. Drawing on his wide-ranging experience, he introduces the foundational principles of verification, presents traditional techniques that have survived the test of time, and introduces emerging techniques for today's most challenging designs. Throughout, Lam emphasizes practical examples rather than mathematical proofs; wherever advanced math is essential, he explains it clearly and accessibly. Coverage includes Simulation-based versus formal verification: advantages, disadvantages, and tradeoffs Coding for verification: functional and timing correctness, syntactical and structure checks, simulation performance, and more Simulator architectures and operations, including event-driven, cycle-based, hybrid, and hardware-based simulators Testbench organization, design, and tools: creating a fast, efficient test environment Test scenarios and assertion: planning, test cases, test generators, commercial and Verilog assertions, and more Ensuring complete coverage, including code, parameters, functions, items, and cross-coverage The verification cycle: failure capture, scope reduction, bug tracking, simulation data dumping, isolation of underlying causes, revision control, regression, release mechanisms, and tape-out criteria An accessible introduction to the mathematics and algorithms of formal verification, from Boolean functions to state-machine equivalence and graph algorithms Decision diagrams, equivalence checking, and symbolic simulation Model checking and symbolic computation Simply put,Hardware Design Verificationwill help you improve and accelerate your entire verification process--from planning through tape-out--so you can get to market faster with higher quality designs. |
functional verification basics: Finding Your Way Through Formal Verification Bernard Murphy, Manish Pandey, Sean Safarpour, 2018-03-06 There are already many books on formal verification, from academic to application-centric, and from tutorials for beginners to guides for advanced users. Many are excellent for their intended purpose; we recommend a few at the end of this book. But most start from the assumption that you have already committed to becoming a hands-on expert (or in some cases that you already are an expert). We feel that detailed tutorials are not the easiest place to extract the introductory view many of us are looking for - background, a general idea of how methods work, applications and how formal verification is managed in the overall verification objective. Since we're writing for a fairly wide audience, we cover some topics that some of you may consider elementary (why verification is hard), some we hope will be of general interest (elementary understanding of the technology) and others that may not immediately interest some readers (setting up a formal verification team). What we intentionally do not cover at all is how to become a hands-on expert. |
functional verification basics: Software Verification and Analysis Janusz Laski, William Stanley, 2009-04-29 “The situation is good, but not hopeless” (Polish folk wisdom) The text is devoted to the Software Analysis and Testing (SAT) methods and s- porting tools for assessing and, if possible, improving software quality, specifically its correctness. The term quality assurance is avoided for it is this author’s firm belief that in the current state of the art that goal is unattainable, a plethora of “gu- anteed” solutions to the problem notwithstanding. Therefore, the rather awkward phrase “improving correctness” is to be understood as an effort to minimize the number of residual programming faults (“bugs”) and their impact on the software’s behavior, that is, to make the faults tolerable. It is clear that such a minimalist approach is a result of frustration. Indeed, having spent years developing software and teaching (preaching?) “How to do it right,” I still do not know how to go about it with any degree of certainty! It appears then I probably should stop right now, for who with a modicum of common sense would reach for a text that does not offer salvation but (as will be seen) hard work and misery? If I intend to continue, it is only that I suspect there are many professionals out there who have similar doubts. And they are the intended audience of this project. The philosophical underpinning of the text is the importance of sound engine- ing practices in software development. |
functional verification basics: Logic Design and Verification Using SystemVerilog (Revised) Donald Thomas, 2016-03-01 SystemVerilog is a Hardware Description Language that enables designers to work at the higher levels of logic design abstractions that match the increased complexity of current day integrated circuit and field-programmable gate array (FPGA) designs. The majority of the book assumes a basic background in logic design and software programming concepts. It is directed at: * students currently in an introductory logic design course that also teaches SystemVerilog, * designers who want to update their skills from Verilog or VHDL, and * students in VLSI design and advanced logic design courses that include verification as well as design topics. The book starts with a tutorial introduction on hardware description languages and simulation. It proceeds to the register-transfer design topics of combinational and finite state machine (FSM) design - these mirror the topics of introductory logic design courses. The book covers the design of FSM-datapath designs and their interfaces, including SystemVerilog interfaces. Then it covers the more advanced topics of writing testbenches including using assertions and functional coverage. A comprehensive index provides easy access to the book's topics.The goal of the book is to introduce the broad spectrum of features in the language in a way that complements introductory and advanced logic design and verification courses, and then provides a basis for further learning.Solutions to problems at the end of chapters, and text copies of the SystemVerilog examples are available from the author as described in the Preface. |
functional verification basics: The e Hardware Verification Language Sasan Iman, Sunita Joshi, 2004-05-28 I am glad to see this new book on the e language and on verification. I am especially glad to see a description of the e Reuse Methodology (eRM). The main goal of verification is, after all, finding more bugs quicker using given resources, and verification reuse (module-to-system, old-system-to-new-system etc. ) is a key enabling component. This book offers a fresh approach in teaching the e hardware verification language within the context of coverage driven verification methodology. I hope it will help the reader und- stand the many important and interesting topics surrounding hardware verification. Yoav Hollander Founder and CTO, Verisity Inc. Preface This book provides a detailed coverage of the e hardware verification language (HVL), state of the art verification methodologies, and the use of e HVL as a facilitating verification tool in implementing a state of the art verification environment. It includes comprehensive descriptions of the new concepts introduced by the e language, e language syntax, and its as- ciated semantics. This book also describes the architectural views and requirements of verifi- tion environments (randomly generated environments, coverage driven verification environments, etc. ), verification blocks in the architectural views (i. e. generators, initiators, c- lectors, checkers, monitors, coverage definitions, etc. ) and their implementations using the e HVL. Moreover, the e Reuse Methodology (eRM), the motivation for defining such a gui- line, and step-by-step instructions for building an eRM compliant e Verification Component (eVC) are also discussed. |
functional verification basics: Verification and Validation in Scientific Computing William L. Oberkampf, Christopher J. Roy, 2010-10-14 Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study. |
functional verification basics: The Best of ICCAD Andreas Kuehlmann, 2003-03-31 The Best of ICCAD marks the 20th anniversary of the International Conference on Computer Aided Design. This book presents a selection of papers from among the best contributions presented in ICCAD based on their impact on research and applications. The Best of ICCAD contains overview articles solicited from leading EDA researchers that comment on the historical context of the selected papers and outline their impact on follow up work. Nine leading companies including Cadence, Synopsys, Fujitsu, IBM and Magma offer Industry Viewpoints outlining the impact of ICCAD on their businesses. The Best of ICCAD provides an insightful reminder on how much progress has been made in EDA in the past twenty years and will be a useful tool for professionals in the field and students in the pursuit to crack the next wave of emerging EDA problems. |
functional verification basics: Verification, Validation, and Testing of Engineered Systems Avner Engel, 2010-11-19 Systems' Verification Validation and Testing (VVT) are carried out throughout systems' lifetimes. Notably, quality-cost expended on performing VVT activities and correcting system defects consumes about half of the overall engineering cost. Verification, Validation and Testing of Engineered Systems provides a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of an engineered system. In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how it be optimized? The book is organized in three parts: The first part provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems (Chapter-1). The second part describes 40 systems' development VVT activities (Chapter-2) and 27 systems' post-development activities (Chapter-3). Corresponding to these activities, this part also describes 17 non-testing systems' VVT methods (Chapter-4) and 33 testing systems' methods (Chapter-5). The third part of the book describes ways to model systems' quality cost, time and risk (Chapter-6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations as well as different business objectives (Chapter-7). Finally, this part describes the methodology used to validate the quality model along with a case study describing a system's quality improvements (Chapter-8). Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. The second category is composed of students and faculties of Systems, Electrical, Aerospace, Mechanical and Industrial Engineering schools. This book may be fully covered in two to three graduate level semesters; although parts of the book may be covered in one semester. University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy. |
functional verification basics: Digital Systems Design Using VHDL Mr. Rohit Manglik, 2024-04-06 EduGorilla Publication is a trusted name in the education sector, committed to empowering learners with high-quality study materials and resources. Specializing in competitive exams and academic support, EduGorilla provides comprehensive and well-structured content tailored to meet the needs of students across various streams and levels. |
functional verification basics: Electronic Design Automation Laung-Terng Wang, Yao-Wen Chang, Kwang-Ting (Tim) Cheng, 2009-03-11 This book provides broad and comprehensive coverage of the entire EDA flow. EDA/VLSI practitioners and researchers in need of fluency in an adjacent field will find this an invaluable reference to the basic EDA concepts, principles, data structures, algorithms, and architectures for the design, verification, and test of VLSI circuits. Anyone who needs to learn the concepts, principles, data structures, algorithms, and architectures of the EDA flow will benefit from this book. - Covers complete spectrum of the EDA flow, from ESL design modeling to logic/test synthesis, verification, physical design, and test - helps EDA newcomers to get up-and-running quickly - Includes comprehensive coverage of EDA concepts, principles, data structures, algorithms, and architectures - helps all readers improve their VLSI design competence - Contains latest advancements not yet available in other books, including Test compression, ESL design modeling, large-scale floorplanning, placement, routing, synthesis of clock and power/ground networks - helps readers to design/develop testable chips or products - Includes industry best-practices wherever appropriate in most chapters - helps readers avoid costly mistakes |
functional verification basics: GPU Computing Gems Wen-mei Hwu, 2011-01 Learn from the leading researchers in parallel programming, who have gathered their solutions and experience in one volume under the guidance of expert area editors. Each chapter is written to be accessible to researchers from other domains, allowing knowledge to cross-pollinate across the GPU spectrum. GPU Computing Gems: Emerald Edition is the first volume in Morgan Kaufmann's Applications of GPU Computing Series, offering the latest insights and research in computer vision, electronic design automation, emerging data-intensive applications, life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, video and image processing.- |
functional verification basics: Rtl Modeling With Systemverilog for Simulation and Synthesis Stuart Sutherland, 2017-06-10 This book is both a tutorial and a reference for engineers who use the SystemVerilog Hardware Description Language (HDL) to design ASICs and FPGAs. The book shows how to write SystemVerilog models at the Register Transfer Level (RTL) that simulate and synthesize correctly, with a focus on proper coding styles and best practices. SystemVerilog is the latest generation of the original Verilog language, and adds many important capabilities to efficiently and more accurately model increasingly complex designs. This book reflects the SystemVerilog-2012/2017 standards. This book is for engineers who already know, or who are learning, digital design engineering. The book does not present digital design theory; it shows how to apply that theory to write RTL models that simulate and synthesize correctly. The creator of the original Verilog Language, Phil Moorby says about this book (an excerpt from the book's Foreword): Many published textbooks on the design side of SystemVerilog assume that the reader is familiar with Verilog, and simply explain the new extensions. It is time to leave behind the stepping-stones and to teach a single consistent and concise language in a single book, and maybe not even refer to the old ways at all! If you are a designer of digital systems, or a verification engineer searching for bugs in these designs, then SystemVerilog will provide you with significant benefits, and this book is a great place to learn the design aspects of SystemVerilog. |
functional verification basics: System Design with SystemC™ Thorsten Grötker, 2002-05-31 The emergence of the system-on-chip (SoC) era is creating many new challenges at all stages of the design process. Engineers are reconsidering how designs are specified, partitioned and verified. With systems and software engineers programming in C/C++ and their hardware counterparts working in hardware description languages such as VHDL and Verilog, problems arise from the use of different design languages, incompatible tools and fragmented tool flows. Momentum is building behind the SystemC language and modeling platform as the best solution for representing functionality, communication, and software and hardware implementations at various levels of abstraction. The reason is clear: increasing design complexity demands very fast executable specifications to validate system concepts, and only C/C++ delivers adequate levels of abstraction, hardware-software integration, and performance. System design today also demands a single common language and modeling foundation in order to make interoperable system--level design tools, services and intellectual property a reality. SystemC is entirely based on C/C++ and the complete source code for the SystemC reference simulator can be freely downloaded from www.systemc.org and executed on both PCs and workstations. System Design and SystemC provides a comprehensive introduction to the powerful modeling capabilities of the SystemC language, and also provides a large and valuable set of system level modeling examples and techniques. Written by experts from Cadence Design Systems, Inc. and Synopsys, Inc. who were deeply involved in the definition and implementation of the SystemC language and reference simulator, this book will provide you with the key concepts you need to be successful with SystemC. System Design with SystemC thoroughly covers the new system level modeling capabilities available in SystemC 2.0 as well as the hardware modeling capabilities available in earlier versions of SystemC. designed and implemented the SystemC language and reference simulator, this book will provide you with the key concepts you need to be successful with SystemC. System Design with SystemC will be of interest to designers in industry working on complex system designs, as well as students and researchers within academia. All of the examples and techniques described within this book can be used with freely available compilers and debuggers – no commercial software is needed. Instructions for obtaining the free source code for the examples obtained within this book are included in the first chapter. |
functional verification basics: Applied Formal Verification Douglas L. Perry, Harry Foster, 2005-05-10 Formal verification is a powerful new digital design method. In this cutting-edge tutorial, two of the field's best known authors team up to show designers how to efficiently apply Formal Verification, along with hardware description languages like Verilog and VHDL, to more efficiently solve real-world design problems. Contents: Simulation-Based Verification * Introduction to Formal Techniques * Contrasting Simulation vs. Formal Techniques * Developing a Formal Test Plan * Writing High-Level Requirements * Proving High-Level Requirements * System Level Simulation * Design Example * Formal Test Plan * Final System Simulation |
calculus - Difference between functional and function. - Mathem…
The modern technical definition of a functional is a function from a vector space into the scalar field. For example, finding the length of a vector is a (non-linear) …
Functional neurologic disorder/conversion disorder - Ma…
Jan 11, 2022 · Functional neurologic disorder is related to how the brain functions, rather than damage to the brain's structure (such as from a stroke, multiple sclerosis, infection …
Functional dyspepsia - Symptoms and causes - Mayo Clinic
Jan 4, 2025 · Functional dyspepsia is a term used to describe a lingering upset stomach that has no obvious cause. Functional dyspepsia (dis-PEP-see-uh) also is called …
Good book for self study of functional analysis
May 24, 2015 · Functional analysis is, for a large part, linear algebra on a infinite dimensional vector space over the real or complex numbers. Having a good intuition …
Functional dyspepsia - Diagnosis and treatment - Mayo Clinic
Jan 4, 2025 · Functional dyspepsia that can't be managed with lifestyle changes may need treatment. Treatment depends on symptoms. It may combine medicines and behavior …
calculus - Difference between functional and function.
The modern technical definition of a functional is a function from a vector space into the scalar field. For example, finding the length of a vector is a (non-linear) functional, or taking a vector …
Functional neurologic disorder/conversion disorder - Mayo Clinic
Jan 11, 2022 · Functional neurologic disorder is related to how the brain functions, rather than damage to the brain's structure (such as from a stroke, multiple sclerosis, infection or injury). …
Functional dyspepsia - Symptoms and causes - Mayo Clinic
Jan 4, 2025 · Functional dyspepsia is a term used to describe a lingering upset stomach that has no obvious cause. Functional dyspepsia (dis-PEP-see-uh) also is called nonulcer dyspepsia. …
Good book for self study of functional analysis
May 24, 2015 · Functional analysis is, for a large part, linear algebra on a infinite dimensional vector space over the real or complex numbers. Having a good intuition from linear algebra is …
Functional dyspepsia - Diagnosis and treatment - Mayo Clinic
Jan 4, 2025 · Functional dyspepsia that can't be managed with lifestyle changes may need treatment. Treatment depends on symptoms. It may combine medicines and behavior therapy. …
Functional neurologic disorder/conversion disorder - Mayo Clinic
Jan 11, 2022 · Spinal cord rehabilitation, Brain rehabilitation, Cancer rehabilitation, Spasticity therapy, Neurological rehabilitatio... n, Inpatient rehabilitation , Outpatient ...
Nonpharmacological approaches to management of functional ...
Feb 9, 2019 · Adult functional gastrointestinal disorders (FGIDs) are brain-gut interaction disorders that affect about 1 out of every 4 adults and have a significant negative impact on …
Overview of basic facts about Cauchy functional equation
Also a few other equations related to this equation are often studied. (Equations which can be easily transformed to Cauchy functional equation or can be solved by using similar methods.) …
calculus of variations - What is the functional derivative ...
Apr 4, 2020 · notice that the RHS is equivalent to the functional derivative defined above. However, it is $$\frac{\delta F}{\delta \rho} (x)$$ that is defined to be the functional derivative, …
Functional analysis textbook (or course) with complete solutions to ...
Functional analysis is mostly not explicit (until the very end and even then it's bare bones) but it is informed by the functional analytic point of view throughout. Well, all of basic analysis (real, …