Fundamentals Of Nuclear Science And Engineering

Advertisement



  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Science and Engineering J. Kenneth Shultis, Richard E. Faw, 2007-09-07 Since the publication of the bestselling first edition, there have been numerous advances in the field of nuclear science. In medicine, accelerator based teletherapy and electron-beam therapy have become standard. New demands in national security have stimulated major advances in nuclear instrumentation.An ideal introduction to the fundamentals of nuclear science and engineering, this book presents the basic nuclear science needed to understand and quantify an extensive range of nuclear phenomena. New to the Second Edition— A chapter on radiation detection by Douglas McGregor Up-to-date coverage of radiation hazards, reactor designs, and medical applications Flexible organization of material that allows for quick reference This edition also takes an in-depth look at particle accelerators, nuclear fusion reactions and devices, and nuclear technology in medical diagnostics and treatment. In addition, the author discusses applications such as the direct conversion of nuclear energy into electricity. The breadth of coverage is unparalleled, ranging from the theory and design characteristics of nuclear reactors to the identification of biological risks associated with ionizing radiation. All topics are supplemented with extensive nuclear data compilations to perform a wealth of calculations. Providing extensive coverage of physics, nuclear science, and nuclear technology of all types, this up-to-date second edition of Fundamentals of Nuclear Science and Engineering is a key reference for any physicists or engineer.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Science and Engineering Third Edition J. Kenneth Shultis, Richard E. Faw, 2016-11-30 Fundamentals of Nuclear Science and Engineering, Third Edition, presents the nuclear science concepts needed to understand and quantify the whole range of nuclear phenomena. Noted for its accessible level and approach, the Third Edition of this long-time bestselling textbook provides overviews of nuclear physics, nuclear power, medicine, propulsion, and radiation detection. Its flexible organization allows for use with Nuclear Engineering majors and those in other disciplines. The Third Edition features updated coverage of the newest nuclear reactor designs, fusion reactors, radiation health risks, and expanded discussion of basic reactor physics with added examples. A complete Solutions Manual and figure slides for classroom projection are available for instructors adopting the text.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Science and Engineering J. Kenneth Shultis, Richard E. Faw, 2016-11-30 Fundamentals of Nuclear Science and Engineering, Third Edition, presents the nuclear science concepts needed to understand and quantify the whole range of nuclear phenomena. Noted for its accessible level and approach, the Third Edition of this long-time bestselling textbook provides overviews of nuclear physics, nuclear power, medicine, propulsion, and radiation detection. Its flexible organization allows for use with Nuclear Engineering majors and those in other disciplines. The Third Edition features updated coverage of the newest nuclear reactor designs, fusion reactors, radiation health risks, and expanded discussion of basic reactor physics with added examples. A complete Solutions Manual and figure slides for classroom projection are available for instructors adopting the text.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Reactor Physics Elmer E. Lewis, 2008-01-18 Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. - A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release - In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution - Ample worked-out examples and over 100 end-of-chapter problems - Full Solutions Manual
  fundamentals of nuclear science and engineering: Fundamental Principles of Nuclear Engineering Jiyang Yu, 2022-01-12 This book highlights a comprehensive and detailed introduction to the fundamental principles related to nuclear engineering. As one of the most popular choices of future energy, nuclear energy is of increasing demand globally. Due to the complexity of nuclear engineering, its research and development as well as safe operation of its facility requires a wide scope of knowledge, ranging from basic disciplines such as mathematics, physics, chemistry, and thermodynamics to applied subjects such as reactor theory and radiation protection. The book covers all necessary knowledge in an illustrative and readable style, with a sufficient amount of examples and exercises. It is an easy-to-read textbook for graduate students in nuclear engineering and a valuable handbook for nuclear facility operators, maintenance personnel and technical staff.
  fundamentals of nuclear science and engineering: Nuclear Engineering Fundamentals Robert E. Masterson, 2017-05-18 NUCLEAR ENGINEERING FUNDAMENTALS is the most modern, up-to-date, and reader friendly nuclear engineering textbook on the market today. It provides a thoroughly modern alternative to classical nuclear engineering textbooks that have not been updated over the last 20 years. Printed in full color, it conveys a sense of awe and wonder to anyone interested in the field of nuclear energy. It discusses nuclear reactor design, nuclear fuel cycles, reactor thermal-hydraulics, reactor operation, reactor safety, radiation detection and protection, and the interaction of radiation with matter. It presents an in-depth introduction to the science of nuclear power, nuclear energy production, the nuclear chain reaction, nuclear cross sections, radioactivity, and radiation transport. All major types of reactors are introduced and discussed, and the role of internet tools in their analysis and design is explored. Reactor safety and reactor containment systems are explored as well. To convey the evolution of nuclear science and engineering, historical figures and their contributions to evolution of the nuclear power industry are explored. Numerous examples are provided throughout the text, and are brought to life through life-like portraits, photographs, and colorful illustrations. The text follows a well-structured pedagogical approach, and provides a wide range of student learning features not available in other textbooks including useful equations, numerous worked examples, and lists of key web resources. As a bonus, a complete Solutions Manual and .PDF slides of all figures are available to qualified instructors who adopt the text. More than any other fundamentals book in a generation, it is student-friendly, and truly impressive in its design and its scope. It can be used for a one semester, a two semester, or a three semester course in the fundamentals of nuclear power. It can also serve as a great reference book for practicing nuclear scientists and engineers. To date, it has achieved the highest overall satisfaction of any mainstream nuclear engineering textbook available on the market today.
  fundamentals of nuclear science and engineering: Handbook of Nuclear Engineering Dan Gabriel Cacuci, 2010-09-14 This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
  fundamentals of nuclear science and engineering: An Introduction to the Engineering Aspects of Nuclear Physics Santanu Ghosh, 2009-11-11 This book is meant for those opting for courses where knowledge of applications of nuclear physics is required and also to the people involved in application oriented fields of nuclear physics. This book includes major applications of nuclear physics, such as detector technology, nuclear power, activation analysis, and applications to biology. Students, learning engineering aspects of physics, which is an upcoming course of study in various institutes, will find the book useful.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Science and Engineering Second Edition J. Kenneth Shultis, Richard E. Faw, 2007-09-07 Since the publication of the bestselling first edition, there have been numerous advances in the field of nuclear science. In medicine, accelerator based teletherapy and electron-beam therapy have become standard. New demands in national security have stimulated major advances in nuclear instrumentation.An ideal introduction to the fundamentals of nuclear science and engineering, this book presents the basic nuclear science needed to understand and quantify an extensive range of nuclear phenomena. New to the Second Edition— A chapter on radiation detection by Douglas McGregor Up-to-date coverage of radiation hazards, reactor designs, and medical applications Flexible organization of material that allows for quick reference This edition also takes an in-depth look at particle accelerators, nuclear fusion reactions and devices, and nuclear technology in medical diagnostics and treatment. In addition, the author discusses applications such as the direct conversion of nuclear energy into electricity. The breadth of coverage is unparalleled, ranging from the theory and design characteristics of nuclear reactors to the identification of biological risks associated with ionizing radiation. All topics are supplemented with extensive nuclear data compilations to perform a wealth of calculations. Providing extensive coverage of physics, nuclear science, and nuclear technology of all types, this up-to-date second edition of Fundamentals of Nuclear Science and Engineering is a key reference for any physicists or engineer.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Engineering Brent J. Lewis, E. Nihan Onder, Andrew A. Prudil, 2017-03-24 Fundamental of Nuclear Engineering is derived from over 25 years of teaching undergraduate and graduate courses on nuclear engineering. The material has been extensively class tested and provides the most comprehensive textbook and reference on the fundamentals of nuclear engineering. It includes a broad range of important areas in the nuclear engineering field; nuclear and atomic theory; nuclear reactor physics, design, control/dynamics, safety and thermal-hydraulics; nuclear fuel engineering; and health physics/radiation protection. It also includes the latest information that is missing in traditional texts, such as space radiation. The aim of the book is to provide a source for upper level undergraduate and graduate students studying nuclear engineering.
  fundamentals of nuclear science and engineering: Nuclear Engineering Handbook Kenneth D. Kok, 2016-10-03 Building upon the success of the first edition, the Nuclear Engineering Handbook, Second Edition, provides a comprehensive, up-to-date overview of nuclear power engineering. Consisting of chapters written by leading experts, this volume spans a wide range of topics in the areas of nuclear power reactor design and operation, nuclear fuel cycles, and radiation detection. Plant safety issues are addressed, and the economics of nuclear power generation in the 21st century are presented. The Second Edition also includes full coverage of Generation IV reactor designs, and new information on MRS technologies, small modular reactors, and fast reactors.
  fundamentals of nuclear science and engineering: The Fundamentals of Nuclear Power Generation M. W. Hubbell, 2011-07-28 Since the dawn of nuclear energy to recent events in the nuclear industry...if you have ever been curious about nuclear power, then this is the book for you. From the people who work in the nuclear industry to the nuclear groups that help guide the nuclear industry....this book is dedicated to all those that have brought this industry to where it is today. Nuclear power is technology that can bring electricity to every household... but we must first make sure everyone knows what the facts are...read this book.
  fundamentals of nuclear science and engineering: Nuclear Corrosion Science and Engineering Damien Feron, 2012-02-21 Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation.This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems.With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. - Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities - Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them - Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches
  fundamentals of nuclear science and engineering: An Introduction to Nuclear Materials K. Linga Murty, Indrajit Charit, 2013-07-26 Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners and experienced practitioners alike.
  fundamentals of nuclear science and engineering: Experiments in Nuclear Science Sidney A. Katz, Jeff C. Bryan, 2016-04-19 Experiments in Nuclear Science is an introductory-level laboratory manual providing hands-on opportunities for developing insights into the origins and properties of nuclear radiations, their interactions with matter, their detection and measurement, and their applications in the physical and life sciences. Based on experiments successfully perform
  fundamentals of nuclear science and engineering: Nuclear Engineering Malcolm Joyce, 2017-09-20 Nuclear Engineering: A Conceptual Introduction to Nuclear Power provides coverage of the introductory, salient principles of nuclear engineering in a comprehensive manner for those entering the profession at the end of their degree. The nuclear power industry is undergoing a renaissance because of the desire for low-carbon baseload electricity, the growing population, and environmental concerns about shale gas, so this book is a welcomed addition to the science. In addition, users will find a great deal of information on the change in the industry, along with other topical areas of interest that are uniquely covered. Intended for undergraduate students or early postgraduate students studying nuclear engineering, this new text will also be appealing to scientifically-literate non-experts wishing to be better informed about the 'nuclear option'.
  fundamentals of nuclear science and engineering: Fundamentals of Radiation Materials Science GARY S. WAS, 2016-07-08 The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: ...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers. - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
  fundamentals of nuclear science and engineering: Nuclear Systems Volume I Neil E. Todreas, Mujid S. Kazimi, 2021-01-11 Nuclear Systems, Volume I: Thermal Hydraulic Fundamentals, Third Edition, provides an in-depth introduction to nuclear power, focusing on thermal hydraulic design and analysis of the nuclear core and other key nuclear plant components. The authors stress the integration of fluid flow and heat transfer as applied to all power reactor types and energy source distribution. They cover nuclear reactor concepts and systems, including GEN III+, GEN IV, and SMR reactors and new power cycles. The text includes new chapter examples and problems using concept parameters, full-color text and art, computer programs, figure slides, and a solutions manual. FEATURES Rigorous coverage of nuclear power generation fundamentals Description and analysis of the latest nuclear power plant designs and technologies Extensive examples in each chapter to illustrate the analysis methods which have been presented New full-color art and text features to enhance the presentation of topics Integration of fluid flow and heat transfer as applied to single- and two-phase coolants Readers will develop the knowledge and design skills needed to improve the next generation of nuclear reactors.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Medicine Dosimetry Michael G. Stabin, 2008-01-15 Written by a leading international authority in the field, this book is ideal for physicians and residents in nuclear medicine who want to improve their knowledge in internal dosimetry. The text is a practical introduction that guides the reader through fundamental concepts in the calculation of radiation dose, including discussions of standardized models, methods of calculations, and available software applications. This comprehensive guide discusses too the biological effects of radiation on living systems. The book also includes an overview of regulatory aspects related to the radiation dosimetry of new radiopharmaceuticals.
  fundamentals of nuclear science and engineering: Nuclear Engineering Zafar Ullah Koreshi, 2022-03-23 Nuclear Engineering Mathematical Modeling and Simulation presents the mathematical modeling of neutron diffusion and transport. Aimed at students and early career engineers, this highly practical and visual resource guides the reader through computer simulations using the Monte Carlo Method which can be applied to a variety of applications, including power generation, criticality assemblies, nuclear detection systems, and nuclear medicine to name a few. The book covers optimization in both the traditional deterministic framework of variational methods and the stochastic framework of Monte Carlo methods. Specific sections cover the fundamentals of nuclear physics, computer codes used for neutron and photon radiation transport simulations, applications of analyses and simulations, optimization techniques for both fixed-source and multiplying systems, and various simulations in the medical area where radioisotopes are used in cancer treatment. - Provides a highly visual and practical reference that includes mathematical modeling, formulations, models and methods throughout - Includes all current major computer codes, such as ANISN, MCNP and MATLAB for user coding and analysis - Guides the reader through simulations for the design optimization of both present-day and future nuclear systems
  fundamentals of nuclear science and engineering: Solutions Manual for Fundamentals of Nuclear Science and Engineering Faw Richard, Shultis J.Kenneth, 2005-03-25
  fundamentals of nuclear science and engineering: How to Drive a Nuclear Reactor Colin Tucker, 2020-01-25 Have you ever wondered how a nuclear power station works? This lively book will answer that question. It’ll take you on a journey from the science behind nuclear reactors, through their start-up, operation and shutdown. Along the way it covers a bit of the engineering, reactor history, different kinds of reactors and what can go wrong with them. Much of this is seen from the viewpoint of a trainee operator on a Pressurised Water Reactor - the most common type of nuclear reactor in the world. Colin Tucker has spent the last thirty years keeping reactors safe. Join him on a tour that is the next best thing to driving a nuclear reactor yourself!
  fundamentals of nuclear science and engineering: The Physics of Nuclear Reactors Serge Marguet, 2018-02-26 This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.
  fundamentals of nuclear science and engineering: Introduction to Nuclear Reactor Physics Robert E. Masterson, 2017-11-22 INTRODUCTION TO NUCLEAR REACTOR PHYSICS is the most comprehensive, modern and readable textbook for this course/module. It explains reactors, fuel cycles, radioisotopes, radioactive materials, design, and operation. Chain reaction and fission reactor concepts are presented, plus advanced coverage including neutron diffusion theory. The diffusion equation, Fisk’s Law, and steady state/time-dependent reactor behavior. Numerical and analytical solutions are also covered. The text has full color illustrations throughout, and a wide range of student learning features.
  fundamentals of nuclear science and engineering: Fundamentals of Thermal and Nuclear Power Generation Yasuo Koizumi, Tomio Okawa, Shoji Mori, 2021-01-29 Fundamentals of Thermal and Nuclear Power Generation is the first volume in the JSME Series in Thermal and Nuclear Power Generation. The first part of this volume provides a thorough and complete reference on the history of thermal and nuclear power generation, which has informed and sculpted today's industry. It prepares readers for subsequent publications in the series that address more advanced topics and will particularly benefit early career researchers and those approaching the industry from an alternative discipline.Modern thermal and nuclear power generation systems and technologies are then explored, including clear analysis on the fundamentals of thermodynamics, hydrodynamics, thermal engineering, combustion engineering, and nuclear physics. The impact of these technologies on society is considered throughout, as well as supply issues, accident risk analysis, and important emission and sustainability considerations.This book is an invaluable resource for researchers and professional engineers in nuclear and thermal energy engineering, and postgraduate and undergraduate students in power generation, especially nuclear and thermal.
  fundamentals of nuclear science and engineering: Radiochemistry and Nuclear Chemistry Gregory Choppin, Jan-Olov Liljenzin, Jan Rydberg, 2002 Origin of Nuclear Science; Nuclei, Isotopes and Isotope Separation; Nuclear Mass and Stability; Unstable Nuclei and Radioactive Decay; Radionuclides in Nature; Absorption of Nuclear Radiation; Radiation Effects on Matter; Detection and Measurement Techniques; Uses of Radioactive Tracers; Cosmic Radiation and Elementary Particles; Nuclear Structure; Energetics of Nuclear Reactions; Particle Accelerators; Mechanics and Models of Nuclear Reactions; Production of Radionuclides; The Transuranium Elements; Thermonuclear Reactions: the Beginning and the Future; Radiation Biology and Radiation Protection; Principles of Nuclear Power; Nuclear Power Reactors; Nuclear Fuel Cycle; Behavior of Radionuclides in the Environment; Appendices; Solvent Extraction Separations; Answers to Exercises; Isotope Chart; Periodic Table of the Elements; Quantities and Units; Fundamental Constants; Energy Conversion Factors; Element and Nuclide Index; Subject Index.
  fundamentals of nuclear science and engineering: Nuclear Reactor Analysis James Duderstadt, 2007-01-01
  fundamentals of nuclear science and engineering: Accelerator Driven Subcritical Reactors H Nifenecker, O Meplan, S David, 2003-06-01 This book describes the basic knowledge in nuclear, neutron, and reactor physics necessary for understanding the principle and implementation of accelerator driven subcritical nuclear reactors (ADSRs), also known as hybrid reactors. Since hybrid reactors may contribute to future nuclear energy production, the book begins with a discussion of
  fundamentals of nuclear science and engineering: Foundations In Applied Nuclear Engineering Analysis (2nd Edition) Glenn E Sjoden, 2015-01-13 Foundations in Applied Nuclear Engineering Analysis (2nd Edition) covers a fast-paced one semester course to address concepts of modeling in mathematics, engineering analysis, and computational problem solving needed in subjects such as radiation interactions, heat transfer, reactor physics, radiation transport, numerical modeling, etc., for success in a nuclear engineering/medical physics curriculum. While certain topics are covered tangentially, others are covered in depth to target on the appropriate amalgam of topics for success in navigating nuclear-related disciplines. Software examples and programming are used throughout the book, since computational capabilities are essential for new engineers.The book contains a array of topics that cover the essential subjects expected for students to successfully navigate into nuclear-related disciplines. The text assumes that students have familiarity with undergraduate mathematics and physics, and are ready to apply those skills to problems in nuclear engineering. Applications and problem sets are directed toward problems in nuclear science. Software examples using Mathematica software are used in the text.This text was developed as part of a very applied course in mathematical physics methods for nuclear engineers. The course in Nuclear Engineering Analysis that follows this text began at the University of Florida; the 2nd edition was released while at the Georgia Institute of Technology.
  fundamentals of nuclear science and engineering: Nuclear Fusion C.M. Braams, P.E. Stott, 2002-06-20 Fusion research started over half a century ago. Although the task remains unfinished, the end of the road could be in sight if society makes the right decisions. Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research is a careful, scholarly account of the course of fusion energy research over the past fifty years. The authors outline the different paths followed by fusion research from initial ignorance to present understanding. They explore why a particular scheme would not work and why it was more profitable to concentrate on the mainstream tokamak development. The book features descriptive sections, in-depth explanations of certain physical and technical issues, scientific terms, and an extensive glossary that explains relevant abbreviations and acronyms.
  fundamentals of nuclear science and engineering: Introduction to Nuclear Engineering John R. Lamarsh, Anthony J. Baratta, 2017-01-09 For junior- and senior-level courses in Nuclear Engineering. Applying nuclear engineering essentials to the modern world Introduction to Nuclear Engineering , 4th Edition reflects changes in the industry since the 2001 publication of its predecessor. With recent data and information, including expanded discussions about the worldwide nuclear renaissance and the development and construction of advanced plant designs, the text aims to provide students with a modern, high-level introduction to nuclear engineering. The nuclear industry is constantly in flux, and the 4th Edition helps students understand real-world applications of nuclear technology--in the United States and across the globe.
  fundamentals of nuclear science and engineering: Uranium Processing and Properties Jonathan S. Morrell, Mark J. Jackson, 2013-07-22 Uranium Processing and Properties describes developments in uranium science, engineering and processing and covers a broad spectrum of topics and applications in which these technologies are harnessed. This book offers the most up-to-date knowledge on emerging nuclear technologies and applications while also covering new and established practices for working with uranium supplies. The book also aims to provide insights into current research and processing technology developments in order to stimulate and motivate innovation among readers. Topics covered include casting technology, plate and sheet rolling, machining of uranium and uranium alloys, forming and fabrication techniques, corrosion kinetics, nondestructive evaluation and thermal modeling.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Physics Noboru Takigawa, Kouhei Washiyama, 2017-01-06 This book introduces the current understanding of the fundamentals of nuclear physics by referring to key experimental data and by providing a theoretical understanding of principal nuclear properties. It primarily covers the structure of nuclei at low excitation in detail. It also examines nuclear forces and decay properties. In addition to fundamentals, the book treats several new research areas such as non-relativistic as well as relativistic Hartree–Fock calculations, the synthesis of super-heavy elements, the quantum chromodynamics phase diagram, and nucleosynthesis in stars, to convey to readers the flavor of current research frontiers in nuclear physics. The authors explain semi-classical arguments and derivation of its formulae. In these ways an intuitive understanding of complex nuclear phenomena is provided. The book is aimed at graduate school students as well as junior and senior undergraduate students and postdoctoral fellows. It is also useful for researchers to update their knowledge of diverse fields of nuclear structure. The book explains how basic physics such as quantum mechanics and statistical physics, as well as basic physical mathematics, is used to describe nuclear phenomena. A number of questions are given from place to place as supplements to the text.
  fundamentals of nuclear science and engineering: Radiation Shielding J. Kenneth Shultis, Richard E. Faw, 2000-01-01 This newly published book is intended for dual use as a textbook for students in radiation shielding courses and a reference work for shielding practitioners. It emphasizes the principles behind techniques used in various aspects of shield analysis and presents these principles in many different contexts. This approach is intended to provide a strong base of understanding in order to facilitate use of the large shielding codes that have come to dominate shielding design and analysis. An assumption is made that the reader has an understanding of mathematics through basic calculus and vector analysis as well as a knowledge of the nuclear physics of radioactive decay. For most chapters, problem sets are provided.
  fundamentals of nuclear science and engineering: Uranium Enrichment and Nuclear Weapon Proliferation Allan S. Krass, Peter Boskma, Boelie Elzen, Wim A. Smit, Stockholm International Peace Research Institute, 2020-11-20 Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.
  fundamentals of nuclear science and engineering: Marine Nuclear Power Technology Junchong Yu, 2020-04-16 This book introduces readers to basic approaches in and principles of marine nuclear power design, including overall reactor design, in-core design, coolant systems and devices, I&C system design, safety system design, and dynamic analysis assessment. It comprehensively reviews both the fundamentals of and latest trends in nuclear-powered devices, covering their entire lifespan, from design and testing to operation and decommissioning. Further, it explores in detail various real-world conditions in the marine context – such as insufficient space for equipment deployment and frequently changing operating conditions as well as swinging and tilting. Offering extensive information on the design and operation of marine nuclear power systems, the book is a valuable resource for researchers and professionals in the area of marine science and nuclear engineering, and graduate students intending to embark on a career in the field.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Pharmacy Gopal B. Saha, 2013-06-29 A new edition of a book is warranted when the book is successful and there are many new developments in the related discipline. Both have occurred for this book during the past 7 years since its second edition. The growth and development in nuclear pharmacy and radiopharmaceutical chemistry along with the continued success of the book have convinced us to update the book; hence this third edition. This book is a ramification of my nuclear pharmacy courses offered to pharmacy students specializing in nuclear pharmacy, nuclear medicine resi dents, and nuclear medicine technology students. The book is written in an integrated form from the basic concept of atomic structure to the practical clinical uses of radiopharmaceuticals. It serves both as a textbook on nu clear pharmacy for pharmacy students and nuclear medicine technologists, and as a useful reference book for many professionals related to nuclear medicine, such as nuclear medicine physicians and radiologists. The book contains 12 chapters. Each chapter is written as comprehen sively as possible based on my personal experience and understanding. At the end of each chapter, a section of pertinent questions and problems and so me suggested reading materials are included. I have made justifiably many additions and deletions as weIl as some reorganization in this edition. Chapter 3 is entirely dedicated to instru ments for radiation detection and measurement, including brief description of gas detectors, gamma-detecting instruments, and tomographic scanners.
  fundamentals of nuclear science and engineering: Fundamentals Frank Wilczek, 2022-01-11 “Fundamentals might be the perfect book for the winter of this plague year. . . . Wilczek writes with breathtaking economy and clarity, and his pleasure in his subject is palpable.” —The New York Times Book Review One of our great contemporary scientists reveals the ten profound insights that illuminate what everyone should know about the physical world In Fundamentals, Nobel laureate Frank Wilczek offers the reader a simple yet profound exploration of reality based on the deep revelations of modern science. With clarity and an infectious sense of joy, he guides us through the essential concepts that form our understanding of what the world is and how it works. Through these pages, we come to see our reality in a new way--bigger, fuller, and stranger than it looked before. Synthesizing basic questions, facts, and dazzling speculations, Wilczek investigates the ideas that form our understanding of the universe: time, space, matter, energy, complexity, and complementarity. He excavates the history of fundamental science, exploring what we know and how we know it, while journeying to the horizons of the scientific world to give us a glimpse of what we may soon discover. Brilliant, lucid, and accessible, this celebration of human ingenuity and imagination will expand your world and your mind.
  fundamentals of nuclear science and engineering: Fundamentals of Nuclear Science and Engineering, Second Edition - Solutions Manual J. Kenneth Shultis, Richard E. Faw, 2008-04-07 Since the publication of the bestselling first edition, there have been numerous advances in the field of nuclear science. In medicine, accelerator based teletherapy and electron-beam therapy have become standard. New demands in national security have stimulated major advances in nuclear instrumentation.An ideal introduction to the fundamentals of nuclear science and engineering, this book presents the basic nuclear science needed to understand and quantify an extensive range of nuclear phenomena. New to the Second Edition- A chapter on radiation detection by Douglas McGregor Up-to-date coverage of radiation hazards, reactor designs, and medical applications Flexible organization of material that allows for quick reference This edition also takes an in-depth look at particle accelerators, nuclear fusion reactions and devices, and nuclear technology in medical diagnostics and treatment. In addition, the author discusses applications such as the direct conversion of nuclear energy into electricity. The breadth of coverage is unparalleled, ranging from the theory and design characteristics of nuclear reactors to the identification of biological risks associated with ionizing radiation. All topics are supplemented with extensive nuclear data compilations to perform a wealth of calculations. Providing extensive coverage of physics, nuclear science, and nuclear technology of all types, this up-to-date second edition of Fundamentals of Nuclear Science and Engineering is a key reference for any physicists or engineer.
FUNDAMENTAL Definition & Meaning - Merriam-Webster
The meaning of FUNDAMENTAL is serving as a basis supporting existence or determining essential structure or function : basic. How to use fundamental in a sentence. Synonym Discussion of …

FUNDAMENTALS | English meaning - Cambridge Dictionary
The fundamentals include modularity, anticipation of change, generality and an incremental approach.

FUNDAMENTAL Definition & Meaning | Dictionary.com
noun a basic principle, rule, law, or the like, that serves as the groundwork of a system; essential part. to master the fundamentals of a trade.

Fundamentals - definition of fundamentals by The Free Dictionary
Fundamentals (See also ESSENCE.) down to bedrock Down to basics or fundamentals; down to the essentials. Bedrock is literally a hard, solid layer of rock underlying the upper strata of soil or …

FUNDAMENTALS definition and meaning | Collins English Dictionary
The fundamentals of something are its simplest, most important elements, ideas, or principles, in contrast to more complicated or detailed ones.

fundamental - Wiktionary, the free dictionary
May 17, 2025 · fundamental (plural fundamentals) (generic, singular) A basic truth, elementary concept, principle, rule, or law. An individual fundamental will often serve as a building block …

Fundamentals - Definition, Meaning & Synonyms
Definitions of fundamentals noun principles from which other truths can be derived “first you must learn the fundamentals ” synonyms: basic principle, basics, bedrock, fundamental principle see …

Fundamental Definition & Meaning | Britannica Dictionary
Reading, writing, and arithmetic are the fundamentals of education. the fundamentals of algebra

What does Fundamentals mean? - Definitions.net
Fundamentals refer to the basic and foundational principles, ideas, facts or elements that serve as the base or core for the structure, functioning or understanding of a particular field, system or …

FUNDAMENTALS definition | Cambridge English Dictionary
fundamentals of It's important for children to be taught the fundamentals of science. Share prices have risen across Asia as fundamentals improve. Global uncertainty is unlikely to become more …

FUNDAMENTAL Definition & Meaning - Merriam-Webster
The meaning of FUNDAMENTAL is serving as a basis supporting existence or determining essential structure or function : basic. How to use fundamental in a sentence. Synonym …

FUNDAMENTALS | English meaning - Cambridge Dictionary
The fundamentals include modularity, anticipation of change, generality and an incremental approach.

FUNDAMENTAL Definition & Meaning | Dictionary.com
noun a basic principle, rule, law, or the like, that serves as the groundwork of a system; essential part. to master the fundamentals of a trade.

Fundamentals - definition of fundamentals by The Free Dictionary
Fundamentals (See also ESSENCE.) down to bedrock Down to basics or fundamentals; down to the essentials. Bedrock is literally a hard, solid layer of rock underlying the upper strata of soil …

FUNDAMENTALS definition and meaning | Collins English …
The fundamentals of something are its simplest, most important elements, ideas, or principles, in contrast to more complicated or detailed ones.

fundamental - Wiktionary, the free dictionary
May 17, 2025 · fundamental (plural fundamentals) (generic, singular) A basic truth, elementary concept, principle, rule, or law. An individual fundamental will often serve as a building block …

Fundamentals - Definition, Meaning & Synonyms
Definitions of fundamentals noun principles from which other truths can be derived “first you must learn the fundamentals ” synonyms: basic principle, basics, bedrock, fundamental principle …

Fundamental Definition & Meaning | Britannica Dictionary
Reading, writing, and arithmetic are the fundamentals of education. the fundamentals of algebra

What does Fundamentals mean? - Definitions.net
Fundamentals refer to the basic and foundational principles, ideas, facts or elements that serve as the base or core for the structure, functioning or understanding of a particular field, system or …

FUNDAMENTALS definition | Cambridge English Dictionary
fundamentals of It's important for children to be taught the fundamentals of science. Share prices have risen across Asia as fundamentals improve. Global uncertainty is unlikely to become …