Advertisement
frequency synthesis by phase lock: Phase Lock Loops and Frequency Synthesis Venceslav F. Kroupa, 2003-06-02 Phase lock loop frequency synthesis finds uses in a myriad of wireless applications - from local oscillators for receivers and transmitters to high performance RF test equipment. As the security and reliability of mobile communication transmissions have gained importance, PLL and frequency synthesisers have become increasingly topical subjects. Phase Lock Loops & Frequency Synthesis examines the various components that make up the phase lock loop design, including oscillators (crystal, voltage controlled), dividers and phase detectors. Interaction amongst the various components are also discussed. Real world problems such as power supply noise, shielding, grounding and isolation are given comprehensive coverage and solved examples with MATHCAD programs are presented throughout. * Presents a comprehesive study of phase lock loops and frequency synthesis in communication systems * Written by an internationally-recognised expert in the field * Details the problem of spurious signals in PLL frequency synthesizers, a topic neglected by available competing titles * Provides detailed theorectical background coupled with practical examples of state-of-the-art device design * MATHCAD programs and simulation software to accompany the design exercises and examples This combination of thorough theoretical treatment and guidance on practical applications will appeal to mobile communication circuit designers and advanced electrical engineering students. |
frequency synthesis by phase lock: Frequency Synthesis by Phase-Lock William F. Egan, 1981-01-19 Emphasises the fundamentals of frequency synthesis. |
frequency synthesis by phase lock: Advanced Frequency Synthesis by Phase Lock William F. Egan, 2011-10-07 The latest frequency synthesis techniques, including sigma-delta,Diophantine, and all-digital Sigma-delta is a frequency synthesis technique that has risen inpopularity over the past decade due to its intensely digital natureand its ability to promote miniaturization. A continuation of thepopular Frequency Synthesis by Phase Lock, Second Edition, thistimely resource provides a broad introduction to sigma-delta bypairing practical simulation results with cutting-edge research.Advanced Frequency Synthesis by Phase Lock discusses bothsigma-delta and fractional-n—the still-in-use forerunner tosigma-delta—employing Simulink® models and detailedsimulations of results to promote a deeper understanding. After a brief introduction, the book shows how spurs areproduced at the synthesizer output by the basic process anddifferent methods for overcoming them. It investigates how variousdefects in sigma-delta synthesis contribute to spurs or noise inthe synthesized signal. Synthesizer configurations are analyzed,and it is revealed how to trade off the various noise sources bychoosing loop parameters. Other sigma-delta synthesis architecturesare then reviewed. The Simulink simulation models that provided data for thepreceding discussions are described, providing guidance in makinguse of such models for further exploration. Next, another methodfor achieving wide loop bandwidth simultaneously with fineresolution—the Diophantine Frequency Synthesizer—isintroduced. Operation at extreme bandwidths is also covered,further describing the analysis of synthesizers that push theirbandwidths close to the sampling-frequency limit. Lastly, the bookreviews a newly important technology that is poised to becomewidely used in high-production consumerelectronics—all-digital frequency synthesis. Detailed appendices provide in-depth discussion on variousstages of development, and many related resources are available fordownload, including Simulink models, MATLAB® scripts,spreadsheets, and executable programs. All these features make thisauthoritative reference ideal for electrical engineers who want toachieve an understanding of sigma-delta frequency synthesis and anawareness of the latest developments in the field. |
frequency synthesis by phase lock: Advanced Frequency Synthesis by Phase Lock William F. Egan, 2011-08-09 The latest frequency synthesis techniques, including sigma-delta, Diophantine, and all-digital Sigma-delta is a frequency synthesis technique that has risen in popularity over the past decade due to its intensely digital nature and its ability to promote miniaturization. A continuation of the popular Frequency Synthesis by Phase Lock, Second Edition, this timely resource provides a broad introduction to sigma-delta by pairing practical simulation results with cutting-edge research. Advanced Frequency Synthesis by Phase Lock discusses both sigma-delta and fractional-n—the still-in-use forerunner to sigma-delta—employing Simulink® models and detailed simulations of results to promote a deeper understanding. After a brief introduction, the book shows how spurs are produced at the synthesizer output by the basic process and different methods for overcoming them. It investigates how various defects in sigma-delta synthesis contribute to spurs or noise in the synthesized signal. Synthesizer configurations are analyzed, and it is revealed how to trade off the various noise sources by choosing loop parameters. Other sigma-delta synthesis architectures are then reviewed. The Simulink simulation models that provided data for the preceding discussions are described, providing guidance in making use of such models for further exploration. Next, another method for achieving wide loop bandwidth simultaneously with fine resolution—the Diophantine Frequency Synthesizer—is introduced. Operation at extreme bandwidths is also covered, further describing the analysis of synthesizers that push their bandwidths close to the sampling-frequency limit. Lastly, the book reviews a newly important technology that is poised to become widely used in high-production consumer electronics—all-digital frequency synthesis. Detailed appendices provide in-depth discussion on various stages of development, and many related resources are available for download, including Simulink models, MATLAB® scripts, spreadsheets, and executable programs. All these features make this authoritative reference ideal for electrical engineers who want to achieve an understanding of sigma-delta frequency synthesis and an awareness of the latest developments in the field. |
frequency synthesis by phase lock: Advanced Phase-lock Techniques James A. Crawford, 2008 A unified approach to phase-lock tecnology, spanning large to small signal-to-noise ratio applications |
frequency synthesis by phase lock: Frequency Acquisition Techniques for Phase Locked Loops Daniel B. Talbot, 2012-10-09 How to acquire the input frequency from an unlocked state A phase locked loop (PLL) by itself cannot become useful until it has acquired the applied signal's frequency. Often, a PLL will never reach frequency acquisition (capture) without explicit assistive circuits. Curiously, few books on PLLs treat the topic of frequency acquisition in any depth or detail. Frequency Acquisition Techniques for Phase Locked Loops offers a no-nonsense treatment that is equally useful for engineers, technicians, and managers. Since mathematical rigor for its own sake can degenerate into intellectual rigor mortis, the author introduces readers to the basics and delivers useful information with clear language and minimal mathematics. With most of the approaches having been developed through years of experience, this completely practical guide explores methods for achieving the locked state in a variety of conditions as it examines: Performance limitations of phase/frequency detector–based phase locked loops The quadricorrelator method for both continuous and sampled modes Sawtooth ramp-and-sample phase detector and how its waveform contains frequency error information that can be extracted The benefits of a self-sweeping, self-extinguishing topology Sweep methods using quadrature mixer-based lock detection The use of digital implementations versus analog Frequency Acquisition Techniques for Phase Locked Loops is an important resource for RF/microwave engineers, in particular, circuit designers; practicing electronics engineers involved in frequency synthesis, phase locked loops, carrier or clock recovery loops, radio-frequency integrated circuit design, and aerospace electronics; and managers wanting to understand the technology of phase locked loops and frequency acquisition assistance techniques or jitter attenuating loops. Errata can be found by visiting the Book Support Site at: http://booksupport.wiley.com |
frequency synthesis by phase lock: Frequency Synthesizer Design Toolkit James A. Crawford, 1994-01-01 This software is aimed at practitioners wishing to gain a broader systems-based perspective of phase-locked loops. It allows quick and efficient solving of filter and attenuator design problems often occurring in the design of frequency synthesizer haedware and related to RF systems. The software is divided into four modules: White provides a highly-integrated lumped-element bandpass filter design program, COMB allows the fast design and analysis of microstrip combline filters, SRD automatically designs high-performance step-recovery diode multipliers, and RPAD considers all resistor permutations and their associated S-parameter quantities. |
frequency synthesis by phase lock: Frequency Synthesis by Phase Lock William F. Egan, 2000 A through discussion of frequency synthesizers, including design and effects on systems Working engineers who design, specify, use, or test frequency synthesizers need to develop an intimate understanding of how these devices operate and their effects on the systems in which they are embedded. Frequency Synthesis by Phase Lock, Second Edition, offers complete coverage that includes both normal control system design and effects that occur due to sampling when bandwidths are pushed. While the discussion emphasizes phase-locked synthesizers, direct and digital synthesizers are covered as well. In addition to the usual discussion of second-order loops, this book describes characteristics of an important class of third-order loops and state-space analysis of loops of arbitrary order. It uses Matlab scripts (available for downloading via ftp) to produce computer-aided analyses, including complex nonlinear simulations of loops in the acquisition process; and it includes a significant volume of material on phase noise, its effects in synthesizer loops, and its impact on systems employing synthesizers. An important reference of rare power and clarity, Frequency Synthesis by Phase Lock, Second Edition, features: * Three new chapters covering architectures, sampling effects, and computer-aided engineering (CAE) * Multicurve graphs of transient and modulation responses for second-and third-order loops * Graphs of phase noise from 28 oscillators and 19 frequency dividers; noise theory and curves for IC oscillators * Charge-pump phase-frequency detectors extensively covered * Fractional-N, including DSP for improved spectrums * Multiple loops, including offset references |
frequency synthesis by phase lock: Direct Digital Frequency Synthesizers Venceslav F. Kroupa, 1998-11-18 With the advent of integrated circuits (IC), digital systems havebecome widely used in modern electronic devices, includingcommunications and measurement equipment. Direct Digital FrequencySynthesizers (DDS) are used in communications as transmitterexciters and local oscillators in receivers. The advantages aresuperior frequency stability, the same as that of the driving clockoscillator, and short switching times. The difficulties are loweroutput frequencies and rather large spurious signals. Compiled for practicing engineers who do not have theprerequisite of a specialist's knowledge in Direct DigitalFrequency Synthesizers (DDS), this collection of 40 importantreprinted papers and 9 never-before published contributionspresents a comprehensive introduction to DDS properties and a clearunderstanding of actual devices. The information in this volume canlead to easier computer simulations and improved designs. Featured topics include: * Discussion of principles and state of the art of wide-rangeDDS * Investigation of spurious signals in DDS * Combination of DDS with Phase Lock Loops (PLL) * Examination of phase and background 'noise' in DDS * Introduction to Digital to Analog Conversion (DAC) * Analysis of mathematics of quasiperiodic omission ofpulses DDFS can also serve as a textbook for students seeking essentialbackground theory. |
frequency synthesis by phase lock: Phase-Locked Frequency Generation and Clocking Woogeun Rhee, 2020-04-14 Phase-Locked Frequency Generation and Clocking covers essential topics and issues in current Phase-Locked Loop design, from a light touch of fundamentals to practical design aspects. Both wireless and wireline systems are considered in the design of low noise frequency generation and clocking systems. Topics covered include architecture and design, digital-intensive Phase-Locked Loops, low noise frequency generation and modulation, clock-and-data recovery, and advanced clocking and clock generation systems. |
frequency synthesis by phase lock: Nanometer Frequency Synthesis Beyond the Phase-Locked Loop Liming Xiu, 2012-06-22 Introducing a new, pioneering approach to integrated circuit design Nanometer Frequency Synthesis Beyond Phase-Locked Loop introduces an innovative new way of looking at frequency that promises to open new frontiers in modern integrated circuit (IC) design. While most books on frequency synthesis deal with the phase-locked loop (PLL), this book focuses on the clock signal. It revisits the concept of frequency, solves longstanding problems in on-chip clock generation, and presents a new time-based information processing approach for future chip design. Beginning with the basics, the book explains how clock signal is used in electronic applications and outlines the shortcomings of conventional frequency synthesis techniques for dealing with clock generation problems. It introduces the breakthrough concept of Time-Average-Frequency, presents the Flying-Adder circuit architecture for the implementation of this approach, and reveals a new circuit device, the Digital-to-Frequency Converter (DFC). Lastly, it builds upon these three key components to explain the use of time rather than level to represent information in signal processing. Provocative, inspiring, and chock-full of ideas for future innovations, the book features: A new way of thinking about the fundamental concept of clock frequency A new circuit architecture for frequency synthesis: the Flying-Adder direct period synthesis A new electronic component: the Digital-to-Frequency Converter A new information processing approach: time-based vs. level-based Examples demonstrating the power of this technology to build better, cheaper, and faster systems Written with the intent of showing readers how to think outside the box, Nanometer Frequency Synthesis Beyond the Phase-Locked Loop is a must-have resource for IC design engineers and researchers as well as anyone who would like to be at the forefront of modern circuit design. |
frequency synthesis by phase lock: Phaselock Techniques Floyd M. Gardner, 2005-08-08 A greatly revised and expanded account of phaselock technology The Third Edition of this landmark book presents new developments in the field of phaselock loops, some of which have never been published until now. Established concepts are reviewed critically and recommendations are offered for improved formulations. The work reflects the author's own research and many years of hands-on experience with phaselock loops. Reflecting the myriad of phaselock loops that are now found in electronic devices such as televisions, computers, radios, and cell phones, the book offers readers much new material, including: * Revised and expanded coverage of transfer functions * Two chapters on phase noise * Two chapters examining digital phaselock loops * A chapter on charge-pump phaselock loops * Expanded discussion of phase detectors and of oscillators * A chapter on anomalous phaselocking * A chapter on graphical aids, including Bode plots, root locus plots, and Nichols charts As in the previous editions, the focus of the book is on underlying principles, which remain valid despite technological advances. Extensive references guide readers to additional information to help them explore particular topics in greater depth. Phaselock Techniques, Third Edition is intended for practicing engineers, researchers, and graduate students. This critically acclaimed book has been thoroughly updated with new information and expanded for greater depth. |
frequency synthesis by phase lock: Phase-locked Loops Roland E. Best, 1993 Unique book/disk set that makes PLL circuit design easier than ever. Table of Contents: PLL Fundamentals; Classification of PLL Types; The Linear PLL (LPLL); The Classical Digital PLL (DPLL); The All-Digital PLL (ADPLL); The Software PLL (SPLL); State Of The Art of Commercial PLL Integrated Circuits; Appendices; Index. Includes a 5 1/4 disk. 100 illustrations. |
frequency synthesis by phase lock: Multi-GHz Frequency Synthesis & Division Hamid R. Rategh, Thomas H. Lee, 2001-10-31 Demand for wireless local area network systems has led to new frequency bands and new standards to accommodate higher data rates. Moreover, opportunities are increasing for the development of low- cost integrated WLAN systems. This guide for RF and high-speed analog circuit designers and students as well as wireless engineers studies the phase-locked loop as a basic building block of frequency synthesizers and WLAN receivers. It provides guidelines and engineering solutions for the design of loop filters in high- frequency PLLs. Rategh (Tavanza Inc.) and Lee (Stanford U.) discuss the different analog and digital frequency division techniques and introduce injection-locked frequency dividers as an alternative to conventional frequency dividers. c. Book News Inc. |
frequency synthesis by phase lock: Integrated Frequency Synthesizers for Wireless Systems Andrea Leonardo Lacaita, Salvatore Levantino, Carlo Samori, 2007-06-28 The increasingly demanding performance requirements of communications systems, as well as problems posed by the continued scaling of silicon technology, present numerous challenges for the design of frequency synthesizers in modern transceivers. This book contains everything you need to know for the efficient design of frequency synthesizers for today's communications applications. If you need to optimize performance and minimize design time, you will find this book invaluable. Using an intuitive yet rigorous approach, the authors describe simple analytical methods for the design of phase locked loop (PLL) frequency synthesizers using scaled silicon CMOS and bipolar technologies. The entire design process, from system-level specification to layout, is covered comprehensively. Practical design examples are included, and implementation issues are addressed. A key problem-solving resource for practitioners in IC design, the book will also be of interest to researchers and graduate students in electrical engineering. |
frequency synthesis by phase lock: Digital Frequency Synthesis Demystified Bar-Giora Goldberg, 1999 Preface; Introduction to frequency synthesis; Frequency synthesizer system analysis; Measurement techniques; DDS general architecture; Phase-locked loop synthesizers; Accumulators; Lockup table and sine rom compression; Digital to analog converters; Synthesizers in use and reference generators; Index. |
frequency synthesis by phase lock: Phase-Lock Basics William F. Egan, 2007-12-04 Broad-based and hands-on, Phase-Lock Basics, Second Edition is both easy to understand and easy to customize. The text can be used as a theoretical introduction for graduate students or, when used with MATLAB simulation software, the book becomes a virtual laboratory for working professionals who want to improve their understanding of the design process and apply it to the demands of specific situations. This second edition features a large body of new statistical data obtained from simulations and uses available experimental data for confirmation of the simulation results. |
frequency synthesis by phase lock: Phase-Locked Loops Roland Best, 2003-07-11 Phase Locked Loops (PLLs) are electronic circuits used for frequency control. Anything using radio waves, from simple radios and cell phones to sophisticated military communications gear uses PLLs.The communications industry’s big move into wireless in the past two years has made this mature topic red hot again. The fifth edition of this classic circuit reference comes complete with extremely valuable PLL design software written by Dr. Best. The software alone is worth many times the price of the book. The new edition also includes new chapters on frequency synthesis, CAD for PLLs, mixed-signal PLLs, and a completely new collection of sample communications applications. |
frequency synthesis by phase lock: Design of CMOS Phase-Locked Loops Behzad Razavi, 2020-01-30 This modern, pedagogic textbook from leading author Behzad Razavi provides a comprehensive and rigorous introduction to CMOS PLL design, featuring intuitive presentation of theoretical concepts, extensive circuit simulations, over 200 worked examples, and 250 end-of-chapter problems. The perfect text for senior undergraduate and graduate students. |
frequency synthesis by phase lock: Monolithic Phase-Locked Loops and Clock Recovery Circuits Behzad Razavi, 1996-04-18 Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise. |
frequency synthesis by phase lock: Pll Performance, Simulation and Design Dean Banerjee, 2006-08 This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL. |
frequency synthesis by phase lock: Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission Nereo Markulic, Kuba Raczkowski, Jan Craninckx, Piet Wambacq, 2019-01-30 This book explains concepts behind fractional subsampling-based frequency synthesis that is re-shaping today’s art in the field of low-noise LO generation. It covers advanced material, giving clear guidance for development of background-calibrated environments capable of spur-free synthesis and wideband phase modulation. It further expands the concepts into the field of subsampling polar transmission, where the newly developed architecture enables unprecedented spectral efficiency levels, unquestionably required by the upcoming generation of wireless standards. |
frequency synthesis by phase lock: Frequency Synthesizers Alexander Chenakin, 2011 A frequency synthesizer is an electronic system for generating any of a range of frequencies from a single fixed oscillator. They are found in modern devices like radio receivers, mobile phones, and GPS systems. This comprehensive resource offers RF and microwave engineers a thorough overview of both well-established and recently developed frequency synthesizer design techniques. Professionals find expert guidance on all design aspects, including main architectures, key building blocks, and practical circuit implementation. Engineers learn the development process and gain a solid understanding of how to build a synthesizer from a basic diagram to the final product.Starting with a simple single-loop PLL example, the book progressively examines various alternatives -- fractional-N, DDS, frequency offset, multiloop and more OCo to achieve required performance objectives. This unique volume gathers a collection of block diagrams, clever circuits, design recipes, and other hard-to-find information that is usually treated as OC design secretsOCO. Written in a simple yet rigorous style with numerous illustrations, the book is an all-in-one reference for both beginner and experienced designers. |
frequency synthesis by phase lock: Clock Generators for SOC Processors Amr Fahim, 2005-06-24 This book examines the issue of design of fully-integrated frequency synthesizers suitable for system-on-a-chip (SOC) processors. This book takes a more global design perspective in jointly examining the design space at the circuit level as well as at the architectural level. The coverage of the book is comprehensive and includes summary chapters on circuit theory as well as feedback control theory relevant to the operation of phase locked loops (PLLs). On the circuit level, the discussion includes low-voltage analog design in deep submicron digital CMOS processes, effects of supply noise, substrate noise, as well device noise. On the architectural level, the discussion includes PLL analysis using continuous-time as well as discrete-time models, linear and nonlinear effects of PLL performance, and detailed analysis of locking behavior. The material then develops into detailed circuit and architectural analysis of specific clock generation blocks. This includes circuits and architectures of PLLs with high power supply noise immunity and digital PLL architectures where the loop filter is digitized. Methods of generating low-spurious sampling clocks for discrete-time analog blocks are then examined. This includes sigma-delta fractional-N PLLs, Direct Digital Synthesis (DDS) techniques and non-conventional uses of PLLs. Design for test (DFT) issues as they arise in PLLs are then discussed. This includes methods of accurately measuring jitter and built-in-self-test (BIST) techniques for PLLs. Finally, clocking issues commonly associated to system-on-a-chip (SOC) designs, such as multiple clock domain interfacing and partitioning, and accurate clock phase generation techniques using delay-locked loops (DLLs) are also addressed. The book provides numerous real world applications, as well as practical rules-of-thumb for modern designers to use at the system, architectural, as well as the circuit level. This book is well suited for practitioners as well as graduate level students who wish to learn more about time-domain analysis and design of frequency synthesis techniques. |
frequency synthesis by phase lock: Circuit Design for RF Transceivers Domine Leenaerts, J. van der Tang, Cicero S. Vaucher, 2001-11-30 Applicable for bookstore catalogue |
frequency synthesis by phase lock: Phase-Locked Loops Woogeun Rhee, Zhiping Yu, 2024-01-18 Phase-Locked Loops Discover the essential materials for phase-locked loop circuit design, from fundamentals to practical design aspects A phase-locked loop (PLL) is a type of circuit with a range of important applications in telecommunications and computing. It generates an output signal with a controlled relationship to an input signal, such as an oscillator which matches the phases of input and output signals. This is a critical function in coherent communication systems, with the result that the theory and design of these circuits are essential to electronic communications of all kinds. Phase-Locked Loops: System Perspectives and Circuit Design Aspects provides a concise, accessible introduction to PLL design. It introduces readers to the role of PLLs in modern communication systems, the fundamental techniques of phase-lock circuitry, and the possible applications of PLLs in a wide variety of electronic communications contexts. The first book of its kind to incorporate modern architectures and to balance theoretical fundamentals with detailed design insights, this promises to be a must-own text for students and industry professionals. The book also features: Coverage of PLL basics with insightful analysis and examples tailored for circuit designers Applications of PLLs for both wireless and wireline systems Practical circuit design aspects for modern frequency generation, frequency modulation, and clock recovery systems Phase-Locked Loops is essential for graduate students and advanced undergraduates in integrated circuit design, as well researchers and engineers in electrical and computing subjects. |
frequency synthesis by phase lock: Phase Lock Loops and Frequency Synthesis Venceslav F. Kroupa, 2003-09-12 Phase lock loop frequency synthesis finds uses in a myriad of wireless applications - from local oscillators for receivers and transmitters to high performance RF test equipment. As the security and reliability of mobile communication transmissions have gained importance, PLL and frequency synthesisers have become increasingly topical subjects. Phase Lock Loops and Frequency Synthesis examines the various components that make up the phase lock loop design, including oscillators (crystal, voltage controlled), dividers and phase detectors. Interaction amongst the various components are also discussed. Real world problems such as power supply noise, shielding, grounding and isolation are given comprehensive coverage and solved examples with MATHCAD programs are presented throughout. Presents a comprehesive study of phase lock loops and frequency synthesis in communication systems Written by an internationally-recognised expert in the field Details the problem of spurious signals in PLL frequency synthesizers, a topic neglected by available competing titles Provides detailed theorectical background coupled with practical examples of state-of-the-art device design MATHCAD programs and simulation software to accompany the design exercises and examples This combination of thorough theoretical treatment and guidance on practical applications will appeal to mobile communication circuit designers and advanced electrical engineering students. |
frequency synthesis by phase lock: Monolithic Phase-locked Loops and Clock Recovery Circuits Behzad Razavi, 1996 |
frequency synthesis by phase lock: Microwave and Wireless Synthesizers Ulrich L. Rohde, Enrico Rubiola, Jerry C. Whitaker, 2021-04-27 The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students. |
frequency synthesis by phase lock: Radio Frequency Circuit Design W. Alan Davis, Krishna Agarwal, 2003-06-11 A much-needed, up-to-date guide to the rapidly growing area of RF circuit design, this book walks readers through a whole range of new and improved techniques for the analysis and design of receiver and transmitter circuits, illustrating them through examples from modern-day communications systems. The application of MMIC to RF design is also discussed. |
frequency synthesis by phase lock: Digital PLL Frequency Synthesizers Ulrich L. Rohde, 1983 |
frequency synthesis by phase lock: Design Methodology for RF CMOS Phase Locked Loops Carlos Quemada, Guillermo Bistué, Inigo Adin, 2009 After a review of PLL essentials, this uniquely comprehensive workbench guide takes you step-by-step through operation principles, design procedures, phase noise analysis, layout considerations, and CMOS realizations for each PLL building block. You get full details on LC tank oscillators including modeling and optimization techniques, followed by design options for CMOS frequency dividers covering flip-flop implementation, the divider by 2 component, and other key factors. The book includes design alternatives for phase detectors that feature methods to minimize jitter caused by the dead zone effect. You also find a sample design of a fully integrated PLL for WLAN applications that demonstrates every step and detail right down to the circuit schematics and layout diagrams. Supported by over 150 diagrams and photos, this one-stop toolkit helps you produce superior PLL designs faster, and deliver more effective solutions for low-cost integrated circuits in all RF applications. |
frequency synthesis by phase lock: Direct Digital Synthesizers Jouko Vankka, Kari A.I. Halonen, 2013-04-17 A major advantage of a direct digital synthesizer (DDS) is that its output frequency, phase and amplitude can be precisely and rapidly manipulated under digital processor control. Other inherent DDS attributes include the ability to tune with extremely fine frequency and phase resolution, and to rapidly `hop' between frequencies. These combined characteristics have made the technology popular in military radar and communications systems. In fact, DDS technology was previously applied almost exclusively to high-end and military applications: it was costly, power-hungry, difficult to implement, and required a discrete high speed D/A converter. Due to improved integrated circuit (IC) technologies, they now present a viable alternative to analog-based phase-locked loop (PLL) technology for generating agile analog output frequency in consumer synthesizer applications. It is easy to include different modulation capabilities in the DDS by using digital signal processing (DSP) methods, because the signal is in digital form. By programming the DDS, adaptive channel bandwidths, modulation formats, frequency hopping and data rates are easily achieved. The flexibility of the DDS makes it ideal for signal generator for software radio. The digital circuits used to implement signal-processing functions do not suffer the effects of thermal drift, aging and component variations associated with their analog counterparts. The implementation of digital functional blocks makes it possible to achieve a high degree of system integration. Recent advances in IC fabrication technology, particularly CMOS, coupled with advanced DSP algorithms and architectures are providing possible single-chip DDS solutions to complex communication and signal processing subsystems as modulators, demodulators, local oscillators, programmable clock generators, and chirp generators. The DDS addresses a variety of applications, including cable modems, measurement equipments, arbitrary waveform generators, cellular base stations and wireless local loop base stations. Direct Digital Synthesizers was written to find possible applications for radio communication systems. It will have appeal for wireless and wireline communication engineers, teachers and students. |
frequency synthesis by phase lock: All-Digital Frequency Synthesizer in Deep-Submicron CMOS Robert B. Staszewski, Poras T. Balsara, 2006-09-11 A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques. |
frequency synthesis by phase lock: CMOS Fractional-N Synthesizers Bram De Muer, Michiel Steyaert, 2005-12-29 CMOS Fractional-N Synthesizers starts with a comprehensive introduction to general frequency synthesis. Different architectures and synthesizer building blocks are discussed with their relative importance on synthesizer specifications. The process of synthesizer specification derivation is illustrated with the DCS-1800 standard as a general test case. The book tackles the design of fractional-N synthesizers in CMOS on circuit level as well as system level. The circuit level focuses on high-speed prescaler design up to 12 GHz in CMOS and on fully integrated, low-phase-noise LC-VCO design. High-Q inductor integration and simulation in CMOS is elaborated and flicker noise minimization techniques are presented, ranging from bias point choice to noise filtering techniques. On a higher level, a systematic design strategy has been developed that trades off all noise contributions and fast dynamics for integrated capacitance (area). Moreover, a theoretical DeltaSigma phase noise analysis is presented, extended with a fast non-linear analysis method to accurately predict the influence of PLL non-linearities on the spectral purity of the DeltaSigma fractional-N frequency synthesizers. |
frequency synthesis by phase lock: Design Technology of Synthetic Aperture Radar Jiaguo Lu, 2019-08-26 An authoritative work on Synthetic Aperture Radar system engineering, with key focus on high resolution imaging, moving target indication, and system engineering technology Synthetic Aperture Radar (SAR) is a powerful microwave remote sensing technique that is used to create high resolution two or three-dimensional representations of objects, such as landscapes, independent of weather conditions and sunlight illumination. SAR technology is a multidisciplinary field that involves microwave technology, antenna technology, signal processing, and image information processing. The use of SAR technology continues grow at a rapid pace in a variety of applications such as high-resolution wide-swath observation, multi-azimuth information acquisition, high-temporal information acquisition, 3-D terrain mapping, and image quality improvement. Design Technology of Synthetic Aperture Radar provides detailed coverage of the fundamental concepts, theories, technology, and design of SAR systems and sub-systems. Supported by the author’s over two decades of research and practice experience in the field, this in-depth volume systematically describes SAR design and presents the latest research developments. Providing examination of all topics relevant to SAR—from radar and antenna system design to receiver technology and signal and image information processing—this comprehensive resource: Provides wide-ranging, up-to-date examination of all major topics related to SAR science, systems, and software Includes guidelines to conduct grounding system designs and analysis Offers coverage of all SAR algorithm classes and detailed SAR algorithms suitable for enabling software implementations Surveys SAR and computed imaging literature of the last sixty years Emphasizes high resolution imaging, moving target indication, and system engineering Design Technology of Synthetic Aperture Radar is indispensable for graduate students majoring in SAR system design, microwave antenna, signal and information processing as well as engineers and technicians involved in SAR system techniques. |
frequency synthesis by phase lock: Low Power RF Circuit Design in Standard CMOS Technology Unai Alvarado, Guillermo Bistué, Iñigo Adín, 2011-10-18 Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies. |
frequency synthesis by phase lock: Phase-Locked Loops John L. Stensby, 1997-06-19 Applications of phase-locked loops play an increasingly important role in modern electronic systems, and the last 25 years have seen new developments in the underlying theories as well. Phase-Locked Loops presents the latest information on the basic theory and applications of PLLs. Organized in a logical format, it first introduces the subject in a qualitative manner and discusses key applications. Next, it develops basic models for components of a PLL, and these are used to develop a basic PLL model. The text then discusses both linear and nonlinear methods that are used to analyze the basic PLL model. This book includes extensive coverage of the nonlinear behavior of phase-locked loops, an important area of this field and one where exciting new research is being performed. No other book available covers this critical area in such careful detail. Improvements brought about by the advent of the personal computer, especially in the use of numerical results, are integrated into the text. This book also focuses on PLL component technologies used in system implementation. |
frequency synthesis by phase lock: Basic Simulation Models of Phase Tracking Devices Using MATLAB William Tranter, Ratchaneekorn Thamvichai, Tamal Bose, 2010-07-07 The Phase-Locked Loop (PLL), and many of the devices used for frequency and phase tracking, carrier and symbol synchronization, demodulation, and frequency synthesis, are fundamental building blocks in today's complex communications systems. It is therefore essential for both students and practicing communications engineers interested in the design and implementation of modern communication systems to understand and have insight into the behavior of these important and ubiquitous devices. Since the PLL behaves as a nonlinear device (at least during acquisition), computer simulation can be used to great advantage in gaining insight into the behavior of the PLL and the devices derived from the PLL. The purpose of this Synthesis Lecture is to provide basic theoretical analyses of the PLL and devices derived from the PLL and simulation models suitable for supplementing undergraduate and graduate courses in communications. The Synthesis Lecture is also suitable for self study by practicing engineers. A significant component of this book is a set of basic MATLAB-based simulations that illustrate the operating characteristics of PLL-based devices and enable the reader to investigate the impact of varying system parameters. Rather than providing a comprehensive treatment of the underlying theory of phase-locked loops, theoretical analyses are provided in sufficient detail in order to explain how simulations are developed. The references point to sources currently available that treat this subject in considerable technical depth and are suitable for additional study. Download MATLAB codes (.zip) Table of Contents: Introduction / Basic PLL Theory / Structures Developed From The Basic PLL / Simulation Models / MATLAB Simulations / Noise Performance Analysis |
frequency是指频数还是频率? - 知乎
The frequency: number of measurements in each category. 频数 :一组数据中,某个值出现的次数。 The relative frequency: proportion of measurements in each category. 频率 :一组数据中,某个值 …
如何优化9800X3D,才能实现游戏性能最大化? - 知乎
我们为了更好的兼顾MEMCLK和UCLK的比率,在BIOS高级模式下,Tweaker选项卡,内存的参数设置部分,将内存的倍频调整为64,即为DDR5-6400。同时需要将Infinity Fabric Frequency and …
wps怎么做频率分布直方图? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业、友善的社区 …
RFID标签是什么?该技术有哪些应用领域? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业、友善的社区 …
谱域(spectral domain) 和频域(frequency domain) 有什么区别联系?
谱域(spectral domain) 和频域(frequency domain) 有什么区别联系? <草民(本科)是软件工程专业,信号与系统也只教授了简单的傅里叶变换> 最近导师让查阅 spectral domain CNN 相关的论文,但是不 …
信号的频域是什么意思?和时域有什么区别? - 知乎
频域和时域的关系(Gif format)Frequency vs Time 信号的基本分析方法. 先从信号的基本分析方法讲起。传统上对无线、有线通讯信号的分析方法从三个域上划分:时域、频域和调制域。调制域是分析信 …
集成电路设计的学术会议含金量排名如何? - 知乎
我转一个复旦大学的会议评级,当然这些评级不光是设计啦,还包括有EDA. ISSCC/DAC:5分 顶尖会议列表 :3分 (1)Symposium on VLSI Circuits (VLSI-C) (2)Custom Integrated Circuits …
十分钟读懂旋转编码(RoPE) - 知乎
Jan 21, 2025 · 1.6 远程衰减. 可以看到,RoPE 形式上和前面公式(6) Sinusoidal 位置编码有点相似,只不过 Sinusoidal 位置编码是加性的,而 RoPE 可以视为乘性的。
无线通信中到底什么是CSI?它有什么作用?他与SNR有什么关 …
在频域中,多径会导致频率选择性衰落,其特征是信道频率响应(channel frequency response) (CFR)。CFR 本质上是 CIR 的傅里叶变换。它由幅度响应和相位响应组成。图 2 展示了多径场景、发射信号、 …
MTF 曲线图应该怎么看? - 知乎
MTF曲线有较多测量方法,常见的有TV-lines、SFR斜边、西门子星图、枯叶图、Log frequency、Log f-contrast、Random 1/f、双曲楔形等,如下是imatest中能使用的MTF测量图卡示意:
frequency是指频数还是频率? - 知乎
The frequency: number of measurements in each category. 频数 :一组数据中,某个值出现的次数。 The relative frequency: proportion of measurements in each category. 频率 :一组数据 …
如何优化9800X3D,才能实现游戏性能最大化? - 知乎
我们为了更好的兼顾MEMCLK和UCLK的比率,在BIOS高级模式下,Tweaker选项卡,内存的参数设置部分,将内存的倍频调整为64,即为DDR5-6400。同时需要将Infinity Fabric Frequency …
wps怎么做频率分布直方图? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
RFID标签是什么?该技术有哪些应用领域? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
谱域(spectral domain) 和频域(frequency domain) 有什么区别联系?
谱域(spectral domain) 和频域(frequency domain) 有什么区别联系? <草民(本科)是软件工程专业,信号与系统也只教授了简单的傅里叶变换> 最近导师让查阅 spectral domain CNN 相关的论 …
信号的频域是什么意思?和时域有什么区别? - 知乎
频域和时域的关系(Gif format)Frequency vs Time 信号的基本分析方法. 先从信号的基本分析方法讲起。传统上对无线、有线通讯信号的分析方法从三个域上划分:时域、频域和调制域。调制 …
集成电路设计的学术会议含金量排名如何? - 知乎
我转一个复旦大学的会议评级,当然这些评级不光是设计啦,还包括有EDA. ISSCC/DAC:5分 顶尖会议列表 :3分 (1)Symposium on VLSI Circuits (VLSI-C) (2)Custom Integrated …
十分钟读懂旋转编码(RoPE) - 知乎
Jan 21, 2025 · 1.6 远程衰减. 可以看到,RoPE 形式上和前面公式(6) Sinusoidal 位置编码有点相似,只不过 Sinusoidal 位置编码是加性的,而 RoPE 可以视为乘性的。
无线通信中到底什么是CSI?它有什么作用?他与SNR有什么关 …
在频域中,多径会导致频率选择性衰落,其特征是信道频率响应(channel frequency response) (CFR)。CFR 本质上是 CIR 的傅里叶变换。它由幅度响应和相位响应组成。图 2 展示了多径 …
MTF 曲线图应该怎么看? - 知乎
MTF曲线有较多测量方法,常见的有TV-lines、SFR斜边、西门子星图、枯叶图、Log frequency、Log f-contrast、Random 1/f、双曲楔形等,如下是imatest中能使用的MTF测量图卡示意: