Elementary Number Theory Second Edition

Advertisement



  elementary number theory second edition: Elementary Number Theory Underwood Dudley, 2012-06-04 Written in a lively, engaging style by the author of popular mathematics books, this volume features nearly 1,000 imaginative exercises and problems. Some solutions included. 1978 edition.
  elementary number theory second edition: Elementary Number Theory Charles Vanden Eynden, 2006-02-15 This practical and versatile text evolved from the author’s years of teaching experience and the input of his students. Vanden Eynden strives to alleviate the anxiety that many students experience when approaching any proof-oriented area of mathematics, including number theory. His informal yet straightforward writing style explains the ideas behind the process of proof construction, showing that mathematicians develop theorems and proofs from trial and error and evolutionary improvement, not spontaneous insight. Furthermore, the book includes more computational problems than most other number theory texts to build students’ familiarity and confidence with the theory behind the material. The author has devised the content, organization, and writing style so that information is accessible, students can gain self-confidence with respect to mathematics, and the book can be used in a wide range of courses—from those that emphasize history and type A problems to those that are proof oriented.
  elementary number theory second edition: Elementary Number Theory with Applications Thomas Koshy, 2007-05-08 This second edition updates the well-regarded 2001 publication with new short sections on topics like Catalan numbers and their relationship to Pascal's triangle and Mersenne numbers, Pollard rho factorization method, Hoggatt-Hensell identity. Koshy has added a new chapter on continued fractions. The unique features of the first edition like news of recent discoveries, biographical sketches of mathematicians, and applications--like the use of congruence in scheduling of a round-robin tournament--are being refreshed with current information. More challenging exercises are included both in the textbook and in the instructor's manual. Elementary Number Theory with Applications 2e is ideally suited for undergraduate students and is especially appropriate for prospective and in-service math teachers at the high school and middle school levels. * Loaded with pedagogical features including fully worked examples, graded exercises, chapter summaries, and computer exercises * Covers crucial applications of theory like computer security, ISBNs, ZIP codes, and UPC bar codes * Biographical sketches lay out the history of mathematics, emphasizing its roots in India and the Middle East
  elementary number theory second edition: Elementary Number Theory in Nine Chapters James J. Tattersall, 1999-10-14 This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
  elementary number theory second edition: Elementary Number Theory Gareth A. Jones, Josephine M. Jones, 2012-12-06 An undergraduate-level introduction to number theory, with the emphasis on fully explained proofs and examples. Exercises, together with their solutions are integrated into the text, and the first few chapters assume only basic school algebra. Elementary ideas about groups and rings are then used to study groups of units, quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part, suitable for third-year students, uses ideas from algebra, analysis, calculus and geometry to study Dirichlet series and sums of squares. In particular, the last chapter gives a concise account of Fermat's Last Theorem, from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.
  elementary number theory second edition: Elementary Number Theory Underwood Dudley, 1978 With almost a thousand imaginative exercises and problems, this book stimulates curiosity about numbers and their properties.
  elementary number theory second edition: Elementary Number Theory James K. Strayer, 2001-12-04 In this student-friendly text, Strayer presents all of the topics necessary for a first course in number theory. Additionally, chapters on primitive roots, Diophantine equations, and continued fractions allow instructors the flexibility to tailor the material to meet their own classroom needs. Each chapter concludes with seven Student Projects, one of which always involves programming a calculator or computer. All of the projects not only engage students in solving number-theoretical problems but also help familiarize them with the relevant mathematical literature.
  elementary number theory second edition: Elementary Number Theory: Primes, Congruences, and Secrets William Stein, 2008-10-28 This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predeterminedsecret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
  elementary number theory second edition: Number Theory George E. Andrews, 2012-04-30 Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.
  elementary number theory second edition: Elementary Number Theory with Programming Marty Lewinter, Jeanine Meyer, 2015-05-06 A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.
  elementary number theory second edition: A Classical Introduction to Modern Number Theory Kenneth Ireland, Michael Rosen, 2013-04-17 This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
  elementary number theory second edition: Elementary Introduction to Number Theory Calvin T. Long, 1965
  elementary number theory second edition: Elementary Number Theory Edmund Landau, 2021-02-22 This three-volume classic work is reprinted here as a single volume.
  elementary number theory second edition: Not Always Buried Deep Paul Pollack,
  elementary number theory second edition: Beginning Number Theory Neville Robbins, 2006 Thoroughly Revised And Updated, The New Second Edition Of Neville Robbins' Beginning Number Theory Includes All Of The Major Topics Covered In A Classic Number Theory Course And Blends In Numerous Applications And Specialized Treatments Of Number Theory, Including Cryptology, Fibonacci Numbers, And Computational Number Theory. The Text Strikes A Balance Between Traditional And Algorithmic Approaches To Elementary Number Theory And Is Supported With Numerous Exercises, Applications, And Case Studies Throughout. Computer Exercises For CAS Systems Are Also Included.
  elementary number theory second edition: A Course in Number Theory H. E. Rose, 1995 The second edition of this undergraduate textbook is now available in paperback. Covering up-to-date as well as established material, it is the only textbook which deals with all the main areas of number theory, taught in the third year of a mathematics course. Each chapter ends with a collection of problems, and hints and sketch solutions are provided at the end of the book, together with useful tables.
  elementary number theory second edition: Topics from the Theory of Numbers Emil Grosswald, 2010-02-23 Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald’s classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate, including: (1) divisibility, (2) congruences, (3) the Riemann zeta function, (4) Diophantine equations and Fermat’s conjecture, (5) the theory of partitions. Comprehensive in nature, Topics from the Theory of Numbers is an ideal text for advanced undergraduates and graduate students alike.
  elementary number theory second edition: A Course in Number Theory and Cryptography Neal Koblitz, 2012-09-05 . . . both Gauss and lesser mathematicians may be justified in rejoic ing that there is one science [number theory] at any rate, and that their own, whose very remoteness from ordinary human activities should keep it gentle and clean. - G. H. Hardy, A Mathematician's Apology, 1940 G. H. Hardy would have been surprised and probably displeased with the increasing interest in number theory for application to ordinary human activities such as information transmission (error-correcting codes) and cryptography (secret codes). Less than a half-century after Hardy wrote the words quoted above, it is no longer inconceivable (though it hasn't happened yet) that the N. S. A. (the agency for U. S. government work on cryptography) will demand prior review and clearance before publication of theoretical research papers on certain types of number theory. In part it is the dramatic increase in computer power and sophistica tion that has influenced some of the questions being studied by number theorists, giving rise to a new branch of the subject, called computational number theory. This book presumes almost no background in algebra or number the ory. Its purpose is to introduce the reader to arithmetic topics, both ancient and very modern, which have been at the center of interest in applications, especially in cryptography. For this reason we take an algorithmic approach, emphasizing estimates of the efficiency of the techniques that arise from the theory.
  elementary number theory second edition: A Guide to Elementary Number Theory Underwood Dudley, 2009 A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in number theory and who want to see what it is about without having to wade through a traditional text, some of which approach 500 pages in length. It will be especially useful to graduate students preparing for the qualifying exams. Though Plato did not quite say, He is unworthy of the name of man who does not know which integers are the sums of two squares. he came close. This guide can make everyone more worthy.
  elementary number theory second edition: Introduction to Analytic Number Theory Tom M. Apostol, 1998-05-28 This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages.-—MATHEMATICAL REVIEWS
  elementary number theory second edition: Number Theory W.A. Coppel, 2009-10-03 Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study.
  elementary number theory second edition: A Pathway Into Number Theory R. P. Burn, 1997 This book leads readers from simple number work to the point where they can prove the classical results of elementary number theory for themselves.
  elementary number theory second edition: Number Theory for Computing Song Y. Yan, 2013-11-11 Modern cryptography depends heavily on number theory, with primality test ing, factoring, discrete logarithms (indices), and elliptic curves being perhaps the most prominent subject areas. Since my own graduate study had empha sized probability theory, statistics, and real analysis, when I started work ing in cryptography around 1970, I found myself swimming in an unknown, murky sea. I thus know from personal experience how inaccessible number theory can be to the uninitiated. Thank you for your efforts to case the transition for a new generation of cryptographers. Thank you also for helping Ralph Merkle receive the credit he deserves. Diffie, Rivest, Shamir, Adleman and I had the good luck to get expedited review of our papers, so that they appeared before Merkle's seminal contribu tion. Your noting his early submission date and referring to what has come to be called Diffie-Hellman key exchange as it should, Diffie-Hellman-Merkle key exchange, is greatly appreciated. It has been gratifying to see how cryptography and number theory have helped each other over the last twenty-five years. :'-Jumber theory has been the source of numerous clever ideas for implementing cryptographic systems and protocols while cryptography has been helpful in getting funding for this area which has sometimes been called the queen of mathematics because of its seeming lack of real world applications. Little did they know! Stanford, 30 July 2001 Martin E. Hellman Preface to the Second Edition Number theory is an experimental science.
  elementary number theory second edition: A Book of Abstract Algebra Charles C Pinter, 2010-01-14 Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
  elementary number theory second edition: Elementary Methods in Number Theory Melvyn B. Nathanson, 2008-01-11 This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
  elementary number theory second edition: Elementary Number Theory Joe Roberts, 1925
  elementary number theory second edition: An Introduction to Number Theory with Cryptography James Kraft, Lawrence Washington, 2018-01-29 Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems Check Your Understanding questions for instant feedback to students New Appendices on What is a proof? and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
  elementary number theory second edition: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
  elementary number theory second edition: Problems in Algebraic Number Theory M. Ram Murty, Jody Esmonde, 2005 The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved
  elementary number theory second edition: A Friendly Introduction to Number Theory Joseph H. Silverman, 2013-10-03 For one-semester undergraduate courses in Elementary Number Theory. A Friendly Introduction to Number Theory, Fourth Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet—number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results.
  elementary number theory second edition: Algebraic Number Theory and Fermat's Last Theorem Ian Stewart, David Tall, 2001-12-12 First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it
  elementary number theory second edition: Discrete Mathematics and Its Applications Kenneth Rosen, 2006-07-26 Discrete Mathematics and its Applications, Sixth Edition, is intended for one- or two-term introductory discrete mathematics courses taken by students from a wide variety of majors, including computer science, mathematics, and engineering. This renowned best-selling text, which has been used at over 500 institutions around the world, gives a focused introduction to the primary themes in a discrete mathematics course and demonstrates the relevance and practicality of discrete mathematics to a wide a wide variety of real-world applications...from computer science to data networking, to psychology, to chemistry, to engineering, to linguistics, to biology, to business, and to many other important fields.
  elementary number theory second edition: Elliptic Curves Lawrence C. Washington, 2008-04-03 Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
  elementary number theory second edition: Elementary Number Theory Underwood Dudley, 2008-09-25 Minimal prerequisites make this text ideal for a first course in number theory. Written in a lively, engaging style by the author of popular mathematics books, it features nearly 1,000 imaginative exercises and problems. Solutions to many of the problems are included, and a teacher's guide is available. 1978 edition.
  elementary number theory second edition: Elementary Number Theory and Its Applications Kenneth H. Rosen, 2005 Elementary Number Theory and Its Applications is noted for its outstanding exercise sets, including basic exercises, exercises designed to help students explore key concepts, and challenging exercises. Computational exercises and computer projects are also provided. In addition to years of use and professor feedback, the fifth edition of this text has been thoroughly checked to ensure the quality and accuracy of the mathematical content and the exercises. The blending of classical theory with modern applications is a hallmark feature of the text. The Fifth Edition builds on this strength with new examples and exercises, additional applications and increased cryptology coverage. The author devotes a great deal of attention to making this new edition up-to-date, incorporating new results and discoveries in number theory made in the past few years.
  elementary number theory second edition: Equations and Inequalities Jiri Herman, Radan Kucera, Jaromir Simsa, 2012-12-06 This book is intended as a text for a problem-solving course at the first or second-year university level, as a text for enrichment classes for talented high-school students, or for mathematics competition training. It can also be used as a source of supplementary material for any course dealing with algebraic equations or inequalities, or to supplement a standard elementary number theory course. There are already many excellent books on the market that can be used for a problem-solving course. However, some are merely collections of prob lems from a variety of fields and lack cohesion. Others present problems according to topic, but provide little or no theoretical background. Most problem books have a limited number of rather challenging problems. While these problems tend to be quite beautiful, they can appear forbidding and discouraging to a beginning student, even with well-motivated and carefully written solutions. As a consequence, students may decide that problem solving is only for the few high performers in their class, and abandon this important part of their mathematical, and indeed overall, education.
  elementary number theory second edition: Number Theory and Geometry: An Introduction to Arithmetic Geometry Álvaro Lozano-Robledo, 2019-03-21 Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
  elementary number theory second edition: Modular Functions and Dirichlet Series in Number Theory Tom M. Apostol, 2012-12-06 This is the second volume of a 2-volume textbook* which evolved from a course (Mathematics 160) offered at the California Institute of Technology during the last 25 years. The second volume presupposes a background in number theory com parable to that provided in the first volume, together with a knowledge of the basic concepts of complex analysis. Most of the present volume is devoted to elliptic functions and modular functions with some of their number-theoretic applications. Among the major topics treated are Rademacher's convergent series for the partition function, Lehner's congruences for the Fourier coefficients of the modular functionj(r), and Hecke's theory of entire forms with multiplicative Fourier coefficients. The last chapter gives an account of Bohr's theory of equivalence of general Dirichlet series. Both volumes of this work emphasize classical aspects of a subject which in recent years has undergone a great deal of modern development. It is hoped that these volumes will help the nonspecialist become acquainted with an important and fascinating part of mathematics and, at the same time, will provide some of the background that belongs to the repertory of every specialist in the field. This volume, like the first, is dedicated to the students who have taken this course and have gone on to make notable contributions to number theory and other parts of mathematics. T.M.A. January, 1976 * The first volume is in the Springer-Verlag series Undergraduate Texts in Mathematics under the title Introduction to Analytic Number Theory.
Bones (TV Series 2005–2017) - IMDb
Bones: Created by Hart Hanson. With Emily Deschanel, David Boreanaz, Michaela Conlin, T.J. Thyne. F.B.I. …

Elementary (TV Series 2012–2019) - IMDb
Elementary: Created by Robert Doherty. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Jon Michael Hill. A crime …

Elementary (TV Series 2012–2019) - Full cast & crew
Elementary (TV Series 2012–2019) - Cast and crew credits, including actors, actresses, directors, writers and more.

IMDb: Ratings, Reviews, and Where to Watch the Best Mov…
IMDb is the world's most popular and authoritative source for movie, TV and celebrity content. Find ratings and …

List of Taboo or Forbidden Relationships In TV/Film - IMDb
After an encounter with a troubled student crosses the line, a young high school teacher struggles between …

Bones (TV Series 2005–2017) - IMDb
Bones: Created by Hart Hanson. With Emily Deschanel, David Boreanaz, Michaela Conlin, T.J. Thyne. F.B.I. Special Agent Seeley Booth teams up with the Jeffersonian's top anthropologist, …

Elementary (TV Series 2012–2019) - IMDb
Elementary: Created by Robert Doherty. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Jon Michael Hill. A crime-solving duo that cracks the NYPD's most impossible cases. Following his …

Elementary (TV Series 2012–2019) - Full cast & crew - IMDb
Elementary (TV Series 2012–2019) - Cast and crew credits, including actors, actresses, directors, writers and more.

IMDb: Ratings, Reviews, and Where to Watch the Best Movies
IMDb is the world's most popular and authoritative source for movie, TV and celebrity content. Find ratings and reviews for the newest movie and TV shows. Get personalized …

List of Taboo or Forbidden Relationships In TV/Film - IMDb
After an encounter with a troubled student crosses the line, a young high school teacher struggles between giving into her desires and doing the right thing. A forbidden romance between a 16 …

"Elementary" Flight Risk (TV Episode 2012) - IMDb
Nov 8, 2012 · Flight Risk: Directed by David Platt. With Jonny Lee Miller, Lucy Liu, Jon Michael Hill, Aidan Quinn. After a small jet crashes killing four people, Holmes battles both the police …

IMDb Top 250 movies
The top rated movie list only includes feature films. Shorts, TV movies, and documentaries are not included; The list is ranked by a formula which includes the number of ratings each movie …

Ben Affleck - IMDb
Ben Affleck. Producer: Argo. Benjamin Géza "Ben" Affleck-Boldt was born on August 15, 1972 in Berkeley, California and raised in Cambridge, Massachusetts, to mother Chris Anne (Boldt), a …

Code of Silence (TV Series 2025– ) - IMDb
Code of Silence: Created by Catherine Moulton. With Rose Ayling-Ellis, Charlotte Ritchie, Nathan Armarkwei Laryea, Andrew Buchan. Alison Woods, deaf caterer, works to support her mother, …

"Elementary" Pilot (TV Episode 2012) - IMDb
Sep 27, 2012 · Pilot: Directed by Michael Cuesta. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Dallas Roberts. Sherlock Holmes, fresh out of rehab, is teamed with a sobriety partner, a …