Advertisement
elementary applied topology: Elementary Applied Topology Robert W. Ghrist, 2014 This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences. |
elementary applied topology: Elementary Topology O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises. |
elementary applied topology: Persistence Theory: From Quiver Representations to Data Analysis Steve Y. Oudot, 2017-05-17 Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis. |
elementary applied topology: Lecture Notes in Algebraic Topology James Frederic Davis, Paul Kirk, 2001 The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic andgeometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, someknowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstructiontheory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to presentproofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, andhomological algebra. The exposition in the text is clear; special cases are presented over complex general statements. |
elementary applied topology: A Concise Course in Algebraic Topology J. Peter May, 2019 |
elementary applied topology: Applications of Algebraic Topology S. Lefschetz, 1975-05-13 This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented. |
elementary applied topology: Computational Homology Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, 2006-04-18 Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics. |
elementary applied topology: Differential Forms in Algebraic Topology Raoul Bott, Loring W. Tu, 2013-04-17 Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology. |
elementary applied topology: The Knot Book Colin Conrad Adams, 2004 Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics. |
elementary applied topology: Topology for Computing Afra J. Zomorodian, 2009-09-28 Written by a computer scientist for computer scientists, this book teaches topology from a computational point of view, and shows how to solve real problems that have topological aspects involving computers. Such problems arise in many areas, such as computer graphics, robotics, structural biology, and chemistry. The author starts from the basics of topology, assuming no prior exposure to the subject, and moves rapidly up to recent advances in the area, including topological persistence and hierarchical Morse complexes. Algorithms and data structures are presented when appropriate. |
elementary applied topology: Elementary Overview Of Mathematical Structures, An: Algebra, Topology And Categories Marco Grandis, 2020-08-12 'The presentation is modeled on the discursive style of the Bourbaki collective, and the coverage of topics is rich and varied. Grandis has provided a large selection of exercises and has sprinkled orienting comments throughout. For an undergraduate library where strong students seek an overview of a significant portion of mathematics, this would be an excellent acquisition. Summing up: Recommended.'CHOICESince the last century, a large part of Mathematics is concerned with the study of mathematical structures, from groups to fields and vector spaces, from lattices to Boolean algebras, from metric spaces to topological spaces, from topological groups to Banach spaces.More recently, these structured sets and their transformations have been assembled in higher structures, called categories.We want to give a structural overview of these topics, where the basic facts of the different theories are unified through the 'universal properties' that they satisfy, and their particularities stand out, perhaps even more.This book can be used as a textbook for undergraduate studies and for self-study. It can provide students of Mathematics with a unified perspective of subjects which are often kept apart. It is also addressed to students and researchers of disciplines having strong interactions with Mathematics, like Physics and Chemistry, Statistics, Computer Science, Engineering. |
elementary applied topology: Computational Topology for Data Analysis Tamal Krishna Dey, Yusu Wang, 2022-03-10 This book provides a computational and algorithmic foundation for techniques in topological data analysis, with examples and exercises. |
elementary applied topology: Introduction to Topology Colin Conrad Adams, Robert David Franzosa, 2008 Learn the basics of point-set topology with the understanding of its real-world application to a variety of other subjects including science, economics, engineering, and other areas of mathematics. Introduces topology as an important and fascinating mathematics discipline to retain the readers interest in the subject. Is written in an accessible way for readers to understand the usefulness and importance of the application of topology to other fields. Introduces topology concepts combined with their real-world application to subjects such DNA, heart stimulation, population modeling, cosmology, and computer graphics. Covers topics including knot theory, degree theory, dynamical systems and chaos, graph theory, metric spaces, connectedness, and compactness. A useful reference for readers wanting an intuitive introduction to topology. |
elementary applied topology: Topological Data Analysis for Genomics and Evolution Raul Rabadan, Andrew J. Blumberg, 2019-12-19 An introduction to geometric and topological methods to analyze large scale biological data; includes statistics and genomic applications. |
elementary applied topology: Algebraic Topology: A Structural Introduction Marco Grandis, 2021-12-24 Algebraic Topology is a system and strategy of partial translations, aiming to reduce difficult topological problems to algebraic facts that can be more easily solved. The main subject of this book is singular homology, the simplest of these translations. Studying this theory and its applications, we also investigate its underlying structural layout - the topics of Homological Algebra, Homotopy Theory and Category Theory which occur in its foundation.This book is an introduction to a complex domain, with references to its advanced parts and ramifications. It is written with a moderate amount of prerequisites — basic general topology and little else — and a moderate progression starting from a very elementary beginning. A consistent part of the exposition is organised in the form of exercises, with suitable hints and solutions.It can be used as a textbook for a semester course or self-study, and a guidebook for further study. |
elementary applied topology: Algebraic Foundations for Applied Topology and Data Analysis Hal Schenck, 2022-11-21 This book gives an intuitive and hands-on introduction to Topological Data Analysis (TDA). Covering a wide range of topics at levels of sophistication varying from elementary (matrix algebra) to esoteric (Grothendieck spectral sequence), it offers a mirror of data science aimed at a general mathematical audience. The required algebraic background is developed in detail. The first third of the book reviews several core areas of mathematics, beginning with basic linear algebra and applications to data fitting and web search algorithms, followed by quick primers on algebra and topology. The middle third introduces algebraic topology, along with applications to sensor networks and voter ranking. The last third covers key contemporary tools in TDA: persistent and multiparameter persistent homology. Also included is a user’s guide to derived functors and spectral sequences (useful but somewhat technical tools which have recently found applications in TDA), and an appendix illustrating a number of software packages used in the field. Based on a course given as part of a masters degree in statistics, the book is appropriate for graduate students. |
elementary applied topology: Topology and Robotics Michael Farber, 2007 Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering. |
elementary applied topology: Algebraic Topology Allen Hatcher, 2002 In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book. |
elementary applied topology: Topology Stefan Waldmann, 2014-08-05 This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course. |
elementary applied topology: Combinatorial Algebraic Topology Dimitry Kozlov, 2007-12-29 This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms. |
elementary applied topology: Topology Tai-Danae Bradley, Tyler Bryson, John Terilla, 2020-08-18 A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory—a contemporary branch of mathematics that provides a way to represent abstract concepts—both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics. After presenting the basics of both category theory and topology, the book covers the universal properties of familiar constructions and three main topological properties—connectedness, Hausdorff, and compactness. It presents a fine-grained approach to convergence of sequences and filters; explores categorical limits and colimits, with examples; looks in detail at adjunctions in topology, particularly in mapping spaces; and examines additional adjunctions, presenting ideas from homotopy theory, the fundamental groupoid, and the Seifert van Kampen theorem. End-of-chapter exercises allow students to apply what they have learned. The book expertly guides students of topology through the important transition from undergraduate student with a solid background in analysis or point-set topology to graduate student preparing to work on contemporary problems in mathematics. |
elementary applied topology: Knots and Links in Three-Dimensional Flows Robert W. Ghrist, Philip J. Holmes, Michael C. Sullivan, 2006-11-14 The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed. |
elementary applied topology: Essentials of Topology with Applications Steven G. Krantz, 2009-07-28 Brings Readers Up to Speed in This Important and Rapidly Growing AreaSupported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological |
elementary applied topology: Category Theory And Applications: A Textbook For Beginners (Second Edition) Marco Grandis, 2021-03-05 Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a better understanding of their roots.This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers the basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications.A reader should have some elementary knowledge of these three subjects, or at least two of them, in order to be able to follow the main examples, appreciate the unifying power of the categorical approach, and discover the subterranean links brought to light and formalised by this perspective.Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications in Algebra and Topology, with a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields.In this second edition, the book has been entirely reviewed, adding many applications and exercises. All non-obvious exercises have now a solution (or a reference, in the case of an advanced topic); solutions are now collected in the last chapter. |
elementary applied topology: Algebraic Topology Satya Deo, 2003-12-01 |
elementary applied topology: Understanding Topology Shaun V. Ault, 2018-01-30 Topology can present significant challenges for undergraduate students of mathematics and the sciences. 'Understanding topology' aims to change that. The perfect introductory topology textbook, 'Understanding topology' requires only a knowledge of calculus and a general familiarity with set theory and logic. Equally approachable and rigorous, the book's clear organization, worked examples, and concise writing style support a thorough understanding of basic topological principles. Professor Shaun V. Ault's unique emphasis on fascinating applications, from chemical dynamics to determining the shape of the universe, will engage students in a way traditional topology textbooks do not--Back cover. |
elementary applied topology: Geometry and Topology for Mesh Generation Herbert Edelsbrunner, 2001-05-28 The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting. |
elementary applied topology: Topology and Geometry for Physicists Charles Nash, Siddhartha Sen, 2013-08-16 Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition. |
elementary applied topology: Differential Topology Victor Guillemin, Alan Pollack, 2010 Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course. |
elementary applied topology: An Introduction to Manifolds Loring W. Tu, 2010-10-05 Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'. |
elementary applied topology: Topology for Physicists Albert S. Schwarz, 2013-03-09 In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds. |
elementary applied topology: A Short Course in Computational Geometry and Topology Herbert Edelsbrunner, 2014-04-28 This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields. |
elementary applied topology: Geometric and Topological Inference Jean-Daniel Boissonnat, Frédéric Chazal, Mariette Yvinec, 2018-09-27 A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science. |
elementary applied topology: Elementary Real and Complex Analysis Georgi E. Shilov, Georgij Evgen'evi? Šilov, Richard A. Silverman, 1996-01-01 Excellent undergraduate-level text offers coverage of real numbers, sets, metric spaces, limits, continuous functions, much more. Each chapter contains a problem set with hints and answers. 1973 edition. |
elementary applied topology: Homotopy Theory: An Introduction to Algebraic Topology , 1975-11-12 Homotopy Theory: An Introduction to Algebraic Topology |
elementary applied topology: The Universal Coefficient Theorem and Quantum Field Theory Andrei-Tudor Patrascu, 2016-09-23 This thesis describes a new connection between algebraic geometry, topology, number theory and quantum field theory. It offers a pedagogical introduction to algebraic topology, allowing readers to rapidly develop basic skills, and it also presents original ideas to inspire new research in the quest for dualities. Its ambitious goal is to construct a method based on the universal coefficient theorem for identifying new dualities connecting different domains of quantum field theory. This thesis opens a new area of research in the domain of non-perturbative physics—one in which the use of different coefficient structures in (co)homology may lead to previously unknown connections between different regimes of quantum field theories. The origin of dualities is an issue in fundamental physics that continues to puzzle the research community with unexpected results like the AdS/CFT duality or the ER-EPR conjecture. This thesis analyzes these observations from a novel and original point of view, mainly based on a fundamental connection between number theory and topology. Beyond its scientific qualities, it also offers a pedagogical introduction to advanced mathematics and its connection with physics. This makes it a valuable resource for students in mathematical physics and researchers wanting to gain insights into (co)homology theories with coefficients or the way in which Grothendieck's work may be connected with physics. |
elementary applied topology: The Hauptvermutung Book A.A. Ranicki, A.J. Casson, D.P. Sullivan, M.A. Armstrong, C.P. Rourke, G.E. Cooke, 2013-03-09 The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc. |
elementary applied topology: Introduction to Topology Theodore W. Gamelin, Robert Everist Greene, 2013-04-22 This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition. |
elementary applied topology: Algebraic Topology Clark Bray, Adrian Butscher, Simon Rubinstein-Salzedo, 2021-06-20 Algebraic Topology is an introductory textbook based on a class for advanced high-school students at the Stanford University Mathematics Camp (SUMaC) that the authors have taught for many years. Each chapter, or lecture, corresponds to one day of class at SUMaC. The book begins with the preliminaries needed for the formal definition of a surface. Other topics covered in the book include the classification of surfaces, group theory, the fundamental group, and homology. This book assumes no background in abstract algebra or real analysis, and the material from those subjects is presented as needed in the text. This makes the book readable to undergraduates or high-school students who do not have the background typically assumed in an algebraic topology book or class. The book contains many examples and exercises, allowing it to be used for both self-study and for an introductory undergraduate topology course. |
Bones (TV Series 2005–2017) - IMDb
Bones: Created by Hart Hanson. With Emily Deschanel, David Boreanaz, Michaela Conlin, T.J. Thyne. F.B.I. Special Agent Seeley Booth teams up with the Jeffersonian's top anthropologist, …
Elementary (TV Series 2012–2019) - IMDb
Elementary: Created by Robert Doherty. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Jon Michael Hill. A crime-solving duo that cracks the NYPD's most impossible cases. Following his …
Elementary (TV Series 2012–2019) - Full cast & crew - IMDb
Elementary (TV Series 2012–2019) - Cast and crew credits, including actors, actresses, directors, writers and more.
IMDb: Ratings, Reviews, and Where to Watch the Best Movies
IMDb is the world's most popular and authoritative source for movie, TV and celebrity content. Find ratings and reviews for the newest movie and TV shows. Get personalized …
List of Taboo or Forbidden Relationships In TV/Film - IMDb
After an encounter with a troubled student crosses the line, a young high school teacher struggles between giving into her desires and doing the right thing. A forbidden romance between a 16 …
"Elementary" Flight Risk (TV Episode 2012) - IMDb
Nov 8, 2012 · Flight Risk: Directed by David Platt. With Jonny Lee Miller, Lucy Liu, Jon Michael Hill, Aidan Quinn. After a small jet crashes killing four people, Holmes battles both the police …
IMDb Top 250 movies
The top rated movie list only includes feature films. Shorts, TV movies, and documentaries are not included; The list is ranked by a formula which includes the number of ratings each movie …
Ben Affleck - IMDb
Ben Affleck. Producer: Argo. Benjamin Géza "Ben" Affleck-Boldt was born on August 15, 1972 in Berkeley, California and raised in Cambridge, Massachusetts, to mother Chris Anne (Boldt), a …
Code of Silence (TV Series 2025– ) - IMDb
Code of Silence: Created by Catherine Moulton. With Rose Ayling-Ellis, Charlotte Ritchie, Nathan Armarkwei Laryea, Andrew Buchan. Alison Woods, deaf caterer, works to support her mother, …
"Elementary" Pilot (TV Episode 2012) - IMDb
Sep 27, 2012 · Pilot: Directed by Michael Cuesta. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Dallas Roberts. Sherlock Holmes, fresh out of rehab, is teamed with a sobriety partner, a …
Bones (TV Series 2005–2017) - IMDb
Bones: Created by Hart Hanson. With Emily Deschanel, David Boreanaz, Michaela Conlin, T.J. Thyne. F.B.I. Special Agent Seeley Booth teams up with the Jeffersonian's top anthropologist, …
Elementary (TV Series 2012–2019) - IMDb
Elementary: Created by Robert Doherty. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Jon Michael Hill. A crime-solving duo that cracks the NYPD's most impossible cases. Following his …
Elementary (TV Series 2012–2019) - Full cast & crew - IMDb
Elementary (TV Series 2012–2019) - Cast and crew credits, including actors, actresses, directors, writers and more.
IMDb: Ratings, Reviews, and Where to Watch the Best Movies
IMDb is the world's most popular and authoritative source for movie, TV and celebrity content. Find ratings and reviews for the newest movie and TV shows. Get personalized …
List of Taboo or Forbidden Relationships In TV/Film - IMDb
After an encounter with a troubled student crosses the line, a young high school teacher struggles between giving into her desires and doing the right thing. A forbidden romance between a 16 …
"Elementary" Flight Risk (TV Episode 2012) - IMDb
Nov 8, 2012 · Flight Risk: Directed by David Platt. With Jonny Lee Miller, Lucy Liu, Jon Michael Hill, Aidan Quinn. After a small jet crashes killing four people, Holmes battles both the police …
IMDb Top 250 movies
The top rated movie list only includes feature films. Shorts, TV movies, and documentaries are not included; The list is ranked by a formula which includes the number of ratings each movie …
Ben Affleck - IMDb
Ben Affleck. Producer: Argo. Benjamin Géza "Ben" Affleck-Boldt was born on August 15, 1972 in Berkeley, California and raised in Cambridge, Massachusetts, to mother Chris Anne (Boldt), a …
Code of Silence (TV Series 2025– ) - IMDb
Code of Silence: Created by Catherine Moulton. With Rose Ayling-Ellis, Charlotte Ritchie, Nathan Armarkwei Laryea, Andrew Buchan. Alison Woods, deaf caterer, works to support her mother, …
"Elementary" Pilot (TV Episode 2012) - IMDb
Sep 27, 2012 · Pilot: Directed by Michael Cuesta. With Jonny Lee Miller, Lucy Liu, Aidan Quinn, Dallas Roberts. Sherlock Holmes, fresh out of rehab, is teamed with a sobriety partner, a …