Advertisement
essential radio astronomy condon: Essential Radio Astronomy James J. Condon, Scott M. Ransom, 2016-04-05 The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors |
essential radio astronomy condon: Essential Radio Astronomy James J. Condon, Scott M. Ransom, 2016-04-05 The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors |
essential radio astronomy condon: Open Skies Kenneth I. Kellermann, Ellen N. Bouton, Sierra S. Brandt, 2020-06-29 This open access book on the history of the National Radio Astronomy Observatory covers the scientific discoveries and technical innovations of late 20th century radio astronomy with particular attention to the people and institutions involved. The authors have made extensive use of the NRAO Archives, which contain an unparalleled collection of documents pertaining to the history of radio astronomy, including the institutional records of NRAO as well as the personal papers of many of the pioneers of U.S. radio astronomy. Technical details and extensive citations to original sources are given in notes for the more technical readers, but are not required for an understanding of the body of the book. This book is intended for an audience ranging from interested lay readers to professional researchers studying the scientific, technical, political, and cultural development of a new science, and how it changed the course of 20th century astronomy. With a Foreword by Ron Ekers. |
essential radio astronomy condon: Cosmic Magnetism, Percy Seymour, 1986 The study of extraterrestrial magnetic fields is a relatively new one, confirmation of the existance of the first such field (that of our Sun) having come a s late as 1908. In the past 30 years a great ammount of knowledge has been accumulated on Cosmic Magnetism, which has turned out to be a truly fascinating topic for study. Percy Seymour's book is the first to deal with the topic in a non-mathematical way, and he offers a fine introduction to his subject. The first three chapters consolidate our knowledge on magnetism in general and the magnetic field of the Earth, as well as discussing the reasons for studying astronomy and cosmic magnetism in particular. The remainder of the book is devoted to the main areas of cosmic magnetism - solar, plantetary and interplanetary fields, fields in stars and pulsars, fields of the milky way and fields in other galaxies. Cosmic Magnetism in an ideal book for sixth-formers and undergraduates studying physics or astronomy and will also appeal to amateur astronomers. as previous work on this topic has been 'hidden' in specialised academic journals. |
essential radio astronomy condon: Tools of Radio Astronomy K. Rohlfs, T. L. Wilson, 2004 This substantially rewritten and expanded fourth edition outlines the most up-to-date methods and tools of radio astronomy. Tools of Radio Astronomy gives a unified treatment of the entire field of radio astronomy, from centimeter to sub-millimeter wavelengths and using single telescopes as well as interferometers. The basic physical principles are described and a complete outline of the instrumentation, observational techniques, and methods of measurement and analysis are given. The goal of this standard reference and text is to prepare readers to carry out observations and relate the data to physical processes in interstellar space. In this fourth edition, the chapter on interferometry and aperture synthesis has been thoroughly revised in the light of most recent developments, as has been the chapter on molecules in interstellar space, and material on receiver technology. From reviews of previous editions: People use this book so much because it describes what one needs in order actually to do radio astronomy ... and it will remain relevant for a long time...This book is an excellent graduate level text - the best available by far. It is also the best reference book for the practising astronomer who wants to do radio astronomy properly, to interpret the jargon or to understand some of the details of current literature. Physics Today This is the one book you should buy if you want to become a radio astronomer. (...) I have used the first and second editions as a postgraduate textbook for many years, and will now recommend the third edition to my students. The Observatory. |
essential radio astronomy condon: Fundamentals of Radio Astronomy Jonathan M. Marr, Ronald L. Snell, Stanley E. Kurtz, 2015-11-30 As evidenced by five Nobel Prizes in physics, radio astronomy in its 80-year history has contributed greatly to our understanding of the universe. Yet for too long, there has been no suitable textbook on radio astronomy for undergraduate students.Fundamentals of Radio Astronomy: Observational Methods is the first undergraduate-level textbook exclus |
essential radio astronomy condon: An Introduction to Radio Astronomy Bernard F. Burke, Francis Graham-Smith, Peter N. Wilkinson, 2019-08-22 A thorough introduction to radio astronomy and techniques for students and researchers approaching radio astronomy for the first time. |
essential radio astronomy condon: Radiative Processes in Astrophysics George B. Rybicki, Alan P. Lightman, 1991-01-08 Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent. |
essential radio astronomy condon: But it was Fun Felix J. Lockman, Frank D. Ghigo, Dana S. Balser, 2007 |
essential radio astronomy condon: An Introduction to Radio Astronomy Bernard F. Burke, Francis Graham-Smith, 2002-04-04 Radio astronomy uses unique observational techniques and offers the only way to investigate many phenomena in the Universe. This book, by two founders of the field, presents both a clear introduction to radio telescopes and techniques, and a broad overview of the radio universe. The material in this new edition has been expanded and updated, reflecting the developments in the field over the last decade. New material reflects the increasing use of aperture synthesis and Very Long Baseline Interferometry, and the further exploitation of molecular spectral lines. A new chapter is devoted to the fundamentals of radiation and propagation theory. The second half of the book constitutes a review of radio observations of our Milky Way galaxy. Wide-ranging and clearly written, this book provides a thorough and up-to-date introduction to the subject for graduate students, and an invaluable overview for researchers turning to radio astronomy for the first time. |
essential radio astronomy condon: A Dirty Window Loris Magnani, Steven N. Shore, 2017-04-06 This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds in particular. Ways of calibrating CO observations with the molecular hydrogen content of a cloud are examined along with the dark molecular gas controversy. High-latitude molecular clouds are considered in detail as vehicles for applying the techniques developed in the book. Given the transient nature of diffuse and translucent molecular clouds, the role of turbulence in the origin and dynamics of these objects is examined in some detail. The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies. |
essential radio astronomy condon: Low Frequency Radio Astronomy and the LOFAR Observatory George Heald, John McKean, Roberto Pizzo, 2018-10-11 This book presents lecture materials from the Third LOFAR Data School, transformed into a coherent and complete reference book describing the LOFAR design, along with descriptions of primary science cases, data processing techniques, and recipes for data handling. Together with hands-on exercises the chapters, based on the lecture notes, teach fundamentals and practical knowledge. LOFAR is a new and innovative radio telescope operating at low radio frequencies (10-250 MHz) and is the first of a new generation of radio interferometers that are leading the way to the ambitious Square Kilometre Array (SKA) to be built in the next decade. This unique reference guide serves as a primary information source for research groups around the world that seek to make the most of LOFAR data, as well as those who will push these topics forward to the next level with the design, construction, and realization of the SKA. This book will also be useful as supplementary reading material for any astrophysics overview or astrophysical techniques course, particularly those geared towards radio astronomy (and radio astronomy techniques). |
essential radio astronomy condon: Extragalactic Radio Sources Wolfgang Priester, Johan Rosenberg, 1965 |
essential radio astronomy condon: Tools of Radio Astronomy Thomas Wilson, Kristen Rohlfs, Susanne Huettemeister, 2008-12-19 Four signi?cant factors have led us to update this text. The ?rst is the breathtaking progress in technology, especially in receiver and digital techniques. The second is the advance of radio astronomy to shorter wavelengths, and the increased availab- ity of astronomical satellites. The third is a need to reorganize some of the chapters in order to separate the basic theory, that seldom changes, from practical aspects that change often. Finally, it is our desire to enhance the text by including problem sets for each chapter. In view of this ambitious plan, we have expanded the number of authors. In the reorganization of this edition, we have divided Chap. 4 of the 4th edition into two Chaps. 4 and 5. The ?rst remains Chap. 4, with a slightly different - tle, Signal Processing and Receivers: Theory. This was expanded to include digital processing and components including samplers and digitizers. In Chap. 5, Prac- cal Receiver Systems. we have relegated the presentations of maser and parametric ampli?er front ends, which are no longer commonly used as microwave receivers in radio astronomy, to a short section on “historical developments” and We have retained and improved the presentations of current state-of-the-art devices, cooled transistor and superconducting front ends. We have also included descriptions of local oscillators and phase lock loops. Chapters 5 and 6 in the 4th edition has now become Chap. 6, Fundamentals of Antenna Theory and Chap. |
essential radio astronomy condon: The Cambridge Handbook of Physics Formulas Graham Woan, 2000-07-10 The Cambridge Handbook of Physics Formulas is a quick-reference aid for students and professionals in the physical sciences and engineering. It contains more than 2000 of the most useful formulas and equations found in undergraduate physics courses, covering mathematics, dynamics and mechanics, quantum physics, thermodynamics, solid state physics, electromagnetism, optics and astrophysics. An exhaustive index allows the required formulas to be located swiftly and simply, and the unique tabular format crisply identifies all the variables involved. The Cambridge Handbook of Physics Formulas comprehensively covers the major topics explored in undergraduate physics courses. It is designed to be a compact, portable, reference book suitable for everyday work, problem solving or exam revision. All students and professionals in physics, applied mathematics, engineering and other physical sciences will want to have this essential reference book within easy reach. |
essential radio astronomy condon: Radio Astronomy Shubhendu Joardar, J. R. Claycomb, 2015-05-15 Designed for a course in radio astronomy or for use as a reference for practicing engineers and astronomers, this book provides a comprehensive overview of the topic. Application boxes in each chapter cover topics like LOFAR, DSN, and VLBI. The book begins with the history of radio astronomy, then explains the fundamentals, polarization, designing radio telescopes, understanding radio arrays, interferometers, receiving systems, mapping techniques, image processing and propagation effects in relation to radio astronomy. A special chapter in the end presents the GMRT radio array as an example of the explained techniques. Features: •Includes context-connection boxes, including NASA’s Deep Space Network (DSN) the South Pole Telescope (SPT), the Low-Frequency Array (LOFAR), Space Very Long Baseline Interferometry (VLBI), pulsar dispersion and distance, and plane waves in conducting and dielectric media •Contains several appendices including radiation potential formalism, the physics of radio spectral lines, and a table of world radio observatories •View the comprehensive companion disc with hundreds of color images and figures from the text |
essential radio astronomy condon: Tools of Radio Astronomy Thomas L. Wilson, Kristen Rohlfs, Susanne Hüttemeister, 2013-12-05 This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust emission, and radio supernovae has been revisited. The chapters on spectral line emission have been updated to cover measurements of the neutral hydrogen radiation from the early universe as well as measurements with new facilities. Similarly the discussion of molecules in interstellar space has been expanded to include the molecular and dust emission from protostars and very cold regions. Several worked examples have been added in the areas of fundamental physics, such as pulsars. Both students and practicing astronomers will appreciate this new up-to-date edition of Tools of Radio Astronomy. |
essential radio astronomy condon: Interferometry and Synthesis in Radio Astronomy A. Richard Thompson, James M. Moran, George W. Swenson Jr., 2017-02-22 This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferometer. From this foundation, it delves into the underlying relationships of interferometry, sets forth the coordinate systems and parameters to describe synthesis imaging, and examines configurations of antennas for multielement synthesis arrays. Various aspects of the design and response of receiving systems are discussed, as well as the special requirements of very-long-baseline interferometry (VLBI), image reconstruction, and recent developments in image enhancement techniques and astrometric observations. Also discussed are propagation effects in the media between the source and the observer, and radio interference, factors that limit performance. Related techniques are introduced, including intensity interferometry, optical interferometry, lunar occultations, tracking of satellites in Earth orbit, interferometry for remote Earth sensing, and holographic measurements of antenna surfaces. This book will benefit anyone who is interested in radio interferometry techniques for astronomy, astrometry, geodesy, or electrical engineering. |
essential radio astronomy condon: Essential Astrophysics Kenneth R. Lang, 2013-06-12 Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provided throughout the text, to reinforce the basic concepts and physics, and to demonstrate the use of the relevant formulae. In this way, the student learns to apply the fundamental equations and principles to cosmic objects and situations. All of the examples are solved with the rough accuracy needed to portray the basic result. Astronomical and physical constants and units as well as the most fundamental equations can be found in the appendix. Essential Astrophysics goes beyond the typical textbook by including references to the seminal papers in the field, with further reference to recent applications, results, or specialized literature. There are fifty set-aside focus elements that enhance and augment the discussion with fascinating details. They include the intriguing historical development of particular topics and provide further astrophysics equations or equations for other topics. Kenneth Lang is a world-renowned author on astrophysics. His books for professional astrophysicists as well as for students and the interested layman are highly acclaimed. |
essential radio astronomy condon: Wspc Handbook Of Astronomical Instrumentation, The (In 5 Volumes) , 2021-05-07 Our goal is to produce a comprehensive handbook of the current state of the art of astronomical instrumentation with a forward view encompassing the next decade. The target audience is graduate students with an interest in astronomical instrumentation, as well as practitioners interested in learning about the state of the art in another wavelength band or field closely related to the one in which they currently work. We assume a working knowledge of the fundamental theory: optics, semiconductor physics, etc. The purpose of this handbook is to bring together some of the leading experts in the world to discuss the frontier of astronomical instrumentation across the electromagnetic spectrum and extending into multimessenger astronomy. |
essential radio astronomy condon: Star Noise: Discovering the Radio Universe Kenneth I. Kellermann, Ellen N. Bouton, E. Bouton, 2023-05-11 Describes how radio astronomers made a series of remarkable serendipitous discoveries that changed our understanding of the Universe. |
essential radio astronomy condon: Astrophysical Concepts Martin Harwit, 2013-03-14 My principal aim in writing this book was to present a wide range of astrophysical topics in sufficient depth to give the reader a general quantitative understanding of the subject. The book outlines cosmic events but does not portray them in detail-it provides aseries of astrophysical sketches. I think this approach befits the present uncertainties and changing views in astrophysics. The material is based on notes I prepared for a course aimed at seniors and beginning graduate students in physics and astronomy at Cornell. This course defined the level at which the book is written. For readers who are versed in physics but are unfamiliar with astronomical terminology, Appendix A is included. It gives a brief background of astronomical concepts and should be read before starting the main text. The first few chapters outline the scope of modern astrophysics and deal with elementary problems concerning the size and mass of cosmic objects. However, it soon becomes apparent that a broad foundation in physics is needed to proceed. This base is developed in Chapters 4 to 7 by using, as ex am pIes, specific astronomi cal situations. Chapters 8 to 10 enlarge on the topics first outlined in Chapter I and show how we can obtain quantitative insights into the structure and evolution of stars, the dynamics of co~mic gases, and the large-scale behavior of the universe. |
essential radio astronomy condon: Synthesis Imaging in Radio Astronomy Richard A. Perley, Frederic R. Schwab, Alan H. Bridle, 1989 |
essential radio astronomy condon: Electronic Imaging in Astronomy Ian S. McLean, 2008-06-25 The second edition of Electronic Imaging in Astronomy: Detectors and Instrumentation describes the remarkable developments that have taken place in astronomical detectors and instrumentation in recent years – from the invention of the charge-coupled device (CCD) in 1970 to the current era of very large telescopes, such as the Keck 10-meter telescopes in Hawaii with their laser guide-star adaptive optics which rival the image quality of the Hubble Space Telescope. Authored by one of the world’s foremost experts on the design and development of electronic imaging systems for astronomy, this book has been written on several levels to appeal to a broad readership. Mathematical expositions are designed to encourage a wider audience, especially among the growing community of amateur astronomers with small telescopes with CCD cameras. The book can be used at the college level for an introductory course on modern astronomical detectors and instruments, and as a supplement for a practical or laboratory class. |
essential radio astronomy condon: Asteroseismic Data Analysis Sarbani Basu, William J. Chaplin, 2017-09-05 Studies of stars and stellar populations, and the discovery and characterization of exoplanets, are being revolutionized by new satellite and telescope observations of unprecedented quality and scope. Some of the most significant advances have been in the field of asteroseismology, the study of stars by observation of their oscillations. Asteroseismic Data Analysis gives a comprehensive technical introduction to this discipline. This book not only helps students and researchers learn about asteroseismology; it also serves as an essential instruction manual for those entering the field. The book presents readers with the foundational techniques used in the analysis and interpretation of asteroseismic data on cool stars that show solar-like oscillations. The techniques have been refined, and in some cases developed, to analyze asteroseismic data collected by the NASA Kepler mission. Topics range from the analysis of time-series observations to extract seismic data for stars to the use of those data to determine global and internal properties of the stars. Reading lists and problem sets are provided, and data necessary for the problem sets are available online. The first book to describe in detail the different techniques used to analyze the data on stellar oscillations, Asteroseismic Data Analysis offers an invaluable window into the hearts of stars. Introduces the asteroseismic study of stars and the theory of stellar oscillations Describes the analysis of observational (time-domain) data Examines how seismic parameters are extracted from observations Explores how stellar properties are determined from seismic data Looks at the “inverse problem,” where frequencies are used to infer internal structures of stars |
essential radio astronomy condon: Measuring the Universe George H. Rieke, 2017-05-25 Astronomy is an observational science, renewed and even revolutionized by new developments in instrumentation. With the resulting growth of multiwavelength investigation as an engine of discovery, it is increasingly important for astronomers to understand the underlying physical principles and operational characteristics for a broad range of instruments. This comprehensive text is ideal for graduate students, active researchers and instrument developers. It is a thorough review of how astronomers obtain their data, covering current approaches to astronomical measurements from radio to gamma rays. The focus is on current technology rather than the history of the field, allowing each topic to be discussed in depth. Areas covered include telescopes, detectors, photometry, spectroscopy, adaptive optics and high-contrast imaging, millimeter-wave and radio receivers, radio and optical/infrared interferometry, and X-ray and gamma-ray astronomy, all at a level that bridges the gap between the basic principles of optics and the subject's abundant specialist literature. Color versions of figures and solutions to selected problems are available online at www.cambridge.org/9780521762298. |
essential radio astronomy condon: The Search for Extra Terrestrial Intelligence David Lamb, 2005-07-26 Is the Search for Extra Terrestrial Intelligence a genuine scientific research programme? David Lamb evaluates claims and counter-claims, and examines recent attempts to establish contact with other intelligent life forms. He considers the benefits and drawbacks of this communication, how we should communicate and whether we actually can. He also assesses competing theories on the origin of life on Earth, discoveries of former solar planets, proposals for space colonies and the consequent technical and ethical issues. |
essential radio astronomy condon: MLI Physics Collection , 2018-05-10 This digital collection of twelve book length titles encompasses all of the major subject areas of physics. All twelve titles are combined into one easily downloadable file and are fully-searchable in a Web.pdf, bookmarked, file format. Titles include electromagnetism, particle physics, quantum mechanics, theory of relativity, mathematical methods for physics, computational physics, electrical engineering experiments, multiphysics modeling, solid state physics, radio astronomy, Newtonian mechanics, and physics lab experiments. FEATURES: • Includes 12 full length book titles in one, fully searchable, Web.pdf file • Each book title is preceded by a descriptive page with overview and features • All titles include the complete front matter, text, and end matter from the original printed version • Over 5000 pages of physics information in one file • Complete file downloads in less than two minutes LIST OF TITLES Particle Physics. Robert Purdy, PhD Mathematical Methods for Physics Using MATLAB and Maple. J. Claycomb, PhD The Special Theory of Relativity. Dennis Morris, PhD Computational Physics. Darren Walker, PhD Quantum Mechanics. Dennis Morris, PhD Basic Electromagnetic Theory. James Babington, PhD Physics Lab Experiments. Matthew M. J. French, PhD Newtonian Mechanics. Derek Raine, PhD Solid State Physics. David Schmool, PhD Multiphysics Modeling Using COMSOL5 and MATLAB. R. Pryor, PhD Radio Astronomy. S. Joardar, PhD Electrical Engineering Experiments. G.P. Chhalotra, PhD |
essential radio astronomy condon: Astrochemistry Olivia Harper Wilkins, Geoffrey A. Blake, 2021-07-21 The answers to some of the most fundamental questions in science lie between the stars, in molecular clouds that serve as celestial laboratories. Disentangling the chemistries in extraterrestrial environments can provide clues about how planets form and shed light on problems in terrestrial chemistry that are difficult to investigate in the lab, and even the origins of life. Astrochemistry takes you on a tour of the molecular universe through time and space, starting with the emergence of matter about 13.8 billion years ago. From there, the tour visits the interstellar medium, with an emphasis on molecular clouds where stars are born. It then goes through different evolutionary stages of stars and planets – and the chemistry that emerges alongside them – before ending in our own solar system, where you will learn about chemical delivery by objects such as comets and meteorites. |
essential radio astronomy condon: Statistics, Data Mining, and Machine Learning in Astronomy Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas, Alexander Gray, 2020 As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. The updates in this new edition will include fixing code rot, correcting errata, and adding some new sections. In particular, the new sections include new material on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest-- |
essential radio astronomy condon: The Cambridge Photographic Atlas of Galaxies Michael König, Stefan Binnewies, 2017-09-07 Galaxies - the Milky Way's siblings - offer a surprising variety of forms and colours. Displaying symmetrical spiral arms, glowing red nebulae or diffuse halos, even the image of a galaxy can reveal much about its construction. All galaxies consist of gas, dust and stars, but the effects of gravity, dark matter and the interaction of star formation and stellar explosions all influence their appearances. This volume showcases more than 250 of the most beautiful galaxies within an amateur's reach and uses them to explain current astrophysical research. It features fantastic photographs, unique insights into our knowledge, tips on astrophotography and essential facts and figures based on the latest science. From the Andromeda Galaxy to galaxy clusters and gravitational lenses, the nature of galaxies is revealed through these stunning amateur photographs. This well illustrated reference atlas deserves a place on the bookshelves of astronomical imagers, observers and armchair enthusiasts. |
essential radio astronomy condon: Eye Beyond the Sky Jie Wang, 2024-09-17 This book highlights stories of the most important 13 ground-based observatories and 14 space probes in human history, leading readers through each significant step of human’s astronomical observation journey. From the earliest Hooker Telescope and the Mount Wilson Observatory, to the latest FAST, JWST and DAMPE, the targets of observation range from large systems such as the solar system, the milky way, and the universe, to individual planets such as Jupiter, Saturn, Mars, and the remote stars, and to the matters that reveal the origin of the universe, such as dark matter and cosmic background radiation. The book presents the mysteries of the sky in an easily readable manner suitable for audiences of all ages who are curious about the universe and thirsty to know all the important discoveries in the past century, especially the last decade. With carefully-selected contents, the book weaves together a series of tales to make the convoluted history of astronomical observation full offun and excitement, ensuring that readers never lose interest during reading. |
essential radio astronomy condon: Dynamical Systems Wang Sang Koon, Martin W. Lo, Jerrold E. Marsden, 2011-06-01 This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier. |
essential radio astronomy condon: Applied General Relativity Michael H. Soffel, Wen-Biao Han, 2019-09-23 In the late 20th and beginning 21st century high-precision astronomy, positioning and metrology strongly rely on general relativity. Supported by exercises and solutions this book offers graduate students and researchers entering those fields a self-contained and exhaustive but accessible treatment of applied general relativity. The book is written in a homogenous (graduate level textbook) style allowing the reader to understand the arguments step by step. It first introduces the mathematical and theoretical foundations of gravity theory and then concentrates on its general relativistic applications: clock rates, clock sychronization, establishment of time scales, astronomical references frames, relativistic astrometry, celestial mechanics and metrology. The authors present up-to-date relativistic models for applied techniques such as Satellite LASER Ranging (SLR), Lunar LASER Ranging (LLR), Globale Navigation Satellite Systems (GNSS), Very Large Baseline Interferometry (VLBI), radar measurements, gyroscopes and pulsar timing. A list of acronyms helps the reader keep an overview and a mathematical appendix provides required functions and terms. |
essential radio astronomy condon: Sensor Array Signal Processing Prabhakar S. Naidu, 2000-07-06 Sensors arrays are used in diverse applications across a broad range of disciplines. Regardless of the application, however, the tools of sensor array signal processing remain the same. Furthermore, whether your interest is in acoustic, seismic, mechanical, or electromagnetic wavefields, they all have a common mathematical framework. Mastering this |
essential radio astronomy condon: Asteroseismic Data Analysis Sarbani Basu, William J. Chaplin, 2017-09-05 Studies of stars and stellar populations, and the discovery and characterization of exoplanets, are being revolutionized by new satellite and telescope observations of unprecedented quality and scope. Some of the most significant advances have been in the field of asteroseismology, the study of stars by observation of their oscillations. Asteroseismic Data Analysis gives a comprehensive technical introduction to this discipline. This book not only helps students and researchers learn about asteroseismology; it also serves as an essential instruction manual for those entering the field. The book presents readers with the foundational techniques used in the analysis and interpretation of asteroseismic data on cool stars that show solar-like oscillations. The techniques have been refined, and in some cases developed, to analyze asteroseismic data collected by the NASA Kepler mission. Topics range from the analysis of time-series observations to extract seismic data for stars to the use of those data to determine global and internal properties of the stars. Reading lists and problem sets are provided, and data necessary for the problem sets are available online. The first book to describe in detail the different techniques used to analyze the data on stellar oscillations, Asteroseismic Data Analysis offers an invaluable window into the hearts of stars. Introduces the asteroseismic study of stars and the theory of stellar oscillations Describes the analysis of observational (time-domain) data Examines how seismic parameters are extracted from observations Explores how stellar properties are determined from seismic data Looks at the “inverse problem,” where frequencies are used to infer internal structures of stars |
essential radio astronomy condon: Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021 Erma Yulihastin, Prayitno Abadi, Peberlin Sitompul, Wendi Harjupa, 2022-09-29 This book presents recent advances in the area of Radioscience, Equatorial Atmospheric Science and Environment from the international symposium for equatorial atmosphere of the celebration of the Equatorial Atmosphere Radar (EAR) 20th Anniversary, conducted by Indonesian National Institute of Aeronautics and Space (LAPAN) and Kyoto University, in 2021. It provides a scientific platform for all participants to discuss ideas and current issues as well as to design solutions in the areas of atmospheric science, environmental science, space science, and related fields. |
essential radio astronomy condon: Astronomical Spectroscopy: An Introduction To The Atomic And Molecular Physics Of Astronomical Spectroscopy (Third Edition) Jonathan Tennyson, 2019-04-17 'The first two editions of this textbook have received well-deserved high acclaims, and this — the third edition — deserves no less. Its explanations of the whole gamut of atomic and molecular spectroscopy provide a solid grasp of the theory as well as how to understand such spectra in practice. It thus makes an ideal companion to books that start from the observational aspect of spectroscopy, whether in the lab or at the telescope … This new edition of Tennyson’s book ought to be in the library of every astronomical department.'The Observatory Magazine'It closely follows the course given to third year UCL undergraduates, and the worked examples have surely been tested on students … The last two chapters serve as an effective appendix on more specialised topics in atomic and molecular theory.'Contemporary PhysicsThe third edition of Astronomical Spectroscopy examines the physics necessary to understand and interpret astronomical spectra. It offers a step-by-step guide to the atomic and molecular physics involved in providing astronomical spectra starting from the relatively simple hydrogen atom and working its way to the spectroscopy of small molecules.Based on UCL course material, this book uses actual astronomical spectra to illustrate the theoretical aspects of the book to give the reader a feel for such spectra as well as an awareness of what information can be retrieved from them. It also provides comprehensive exercises, with answers given, to aid understanding. |
essential radio astronomy condon: Diatoms Joseph Seckbach, Richard Gordon, 2019-07-11 The aim of this new book series (Diatoms: Biology and Applications) is to provide a comprehensive and reliable source of information on diatom biology and applications. The first book of the series, Diatoms Fundamentals & Applications, is wide ranging, starting with the contributions of amateurs and the beauty of diatoms, to details of how their shells are made, how they bend light to their advantage and ours, and major aspects of their biochemistry (photosynthesis and iron metabolism). The book then delves into the ecology of diatoms living in a wide range of habitats, and look at those few that can kill or harm us. The book concludes with a wide range of applications of diatoms, in forensics, manufacturing, medicine, biofuel and agriculture. The contributors are leading international experts on diatoms. This book is for a wide audience researchers, academics, students, and teachers of biology and related disciplines, written to both act as an introduction to diatoms and to present some of the most advanced research on them. |
Home | Essential Mod
Essential mod supports the latest and most popular versions of Minecraft Java Edition (1.8, 1.12, 1.16 to 1.21) on Fabric, Forge and NeoForge modloaders. See all versions
Downloads - Essential Mod
Download Essential Mod for enhanced Minecraft features, Minecraft hosting, character customization, and more!
Wiki - Shaders - Essential Mod
Essential Mod’s compatibility with Fabric, Forge and NeoForge modloaders makes it simple to enhance your game with stunning shaders. Learn how to install shaders alongside Essential …
Wiki - Play Together - Essential Mod
Wondering how to play Minecraft with friends? Joining friends in Minecraft is super easy with Essential Mod. Following these steps works on both Minecraft worlds and Minecraft servers. …
Wiki - Manual Install - Essential Mod
Learn how to manually install Essential Mod and its required modloader for the vanilla Minecraft launcher.
Wiki - OptiFine - Essential Mod
This guide explains how to install Optifine alongside Essential Mod, for an enhanced Minecraft experience.
Wiki - Essential Network Error | Essential Mod
Essential Mod can fail to authenticate your connection due to various reasons. The guides below help you fix common issues. Learn how to troubleshoot and resolve Essential Mod Network …
Wiki - Essential Coins | Essential Mod
Unlock premium cosmetics and emotes with Essential Coins! Discover how to use coins to access exclusive wardrobe items and support your favorite Minecraft creators.
Changelog - Essential Mod
Jun 4, 2025 · When Essential comes bundled with another mod, we will ask the user during the onboarding process whether they would like the full version of Essential with all features or the …
Wiki - Sodium & Iris - Essential Mod
This guide explains how to install Sodium and Iris alongside Essential Mod, for a more performant and enhanced Minecraft experience.
Home | Essential Mod
Essential mod supports the latest and most popular versions of Minecraft Java Edition (1.8, 1.12, 1.16 to 1.21) on Fabric, Forge and NeoForge modloaders. See all versions
Downloads - Essential Mod
Download Essential Mod for enhanced Minecraft features, Minecraft hosting, character customization, and more!
Wiki - Shaders - Essential Mod
Essential Mod’s compatibility with Fabric, Forge and NeoForge modloaders makes it simple to enhance your game with stunning shaders. Learn how to install shaders alongside Essential …
Wiki - Play Together - Essential Mod
Wondering how to play Minecraft with friends? Joining friends in Minecraft is super easy with Essential Mod. Following these steps works on both Minecraft worlds and Minecraft servers. …
Wiki - Manual Install - Essential Mod
Learn how to manually install Essential Mod and its required modloader for the vanilla Minecraft launcher.
Wiki - OptiFine - Essential Mod
This guide explains how to install Optifine alongside Essential Mod, for an enhanced Minecraft experience.
Wiki - Essential Network Error | Essential Mod
Essential Mod can fail to authenticate your connection due to various reasons. The guides below help you fix common issues. Learn how to troubleshoot and resolve Essential Mod Network …
Wiki - Essential Coins | Essential Mod
Unlock premium cosmetics and emotes with Essential Coins! Discover how to use coins to access exclusive wardrobe items and support your favorite Minecraft creators.
Changelog - Essential Mod
Jun 4, 2025 · When Essential comes bundled with another mod, we will ask the user during the onboarding process whether they would like the full version of Essential with all features or the …
Wiki - Sodium & Iris - Essential Mod
This guide explains how to install Sodium and Iris alongside Essential Mod, for a more performant and enhanced Minecraft experience.