Discrete Mathematics Second Edition

Advertisement



  discrete mathematics second edition: Discrete Mathematics Norman Biggs, 2002-12-19 Discrete mathematics is a compulsory subject for undergraduate computer scientists. This new edition includes new chapters on statements and proof, logical framework, natural numbers and the integers and updated exercises from the previous edition.
  discrete mathematics second edition: Discrete Mathematics with Ducks Sarah-marie Belcastro, 2018-11-15 Discrete Mathematics with Ducks, Second Edition is a gentle introduction for students who find the proofs and abstractions of mathematics challenging. At the same time, it provides stimulating material that instructors can use for more advanced students. The first edition was widely well received, with its whimsical writing style and numerous exercises and materials that engaged students at all levels. The new, expanded edition continues to facilitate effective and active learning. It is designed to help students learn about discrete mathematics through problem-based activities. These are created to inspire students to understand mathematics by actively practicing and doing, which helps students better retain what they’ve learned. As such, each chapter contains a mixture of discovery-based activities, projects, expository text, in-class exercises, and homework problems. The author’s lively and friendly writing style is appealing to both instructors and students alike and encourages readers to learn. The book’s light-hearted approach to the subject is a guiding principle and helps students learn mathematical abstraction. Features: The book’s Try This! sections encourage students to construct components of discussed concepts, theorems, and proofs Provided sets of discovery problems and illustrative examples reinforce learning Bonus sections can be used by instructors as part of their regular curriculum, for projects, or for further study
  discrete mathematics second edition: Discrete Mathematics with Proof Eric Gossett, 2009-06-22 A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.
  discrete mathematics second edition: A Spiral Workbook for Discrete Mathematics Harris Kwong, 2015-11-06 A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
  discrete mathematics second edition: A Beginner's Guide to Discrete Mathematics W.D. Wallis, 2011-10-07 Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.
  discrete mathematics second edition: Concrete Mathematics Ronald L. Graham, Donald E. Knuth, Oren Patashnik, 1994-02-28 This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. More concretely, the authors explain, it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems. The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
  discrete mathematics second edition: Handbook of Discrete and Computational Geometry, Second Edition Csaba D. Toth, Joseph O'Rourke, Jacob E. Goodman, 2004-04-13 While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies
  discrete mathematics second edition: Fundamentals of Discrete Structures Damian M. Lyons, Gary M. Weiss, Christina Papadakis-Kanaris, Arthur G. Werschulz, Associate Professor of Mathematics and Computer Science Fordham University Visiting Scholar Arthur G Werschulz, 2012-08-21 Normal 0 false false false EN-US X-NONE X-NONE Selecting a mathematics textbook that meets the needs of a diverse student body can be a challenge. Some have too much information for a beginner; some have too little. The authors of Fundamentals of Discrete Structures, frustrated by their search for the perfect text, decided to write their own. The result provides an excellent introduction to discrete mathematics that is both accessible to liberal arts majors satisfying their core mathematics requirements, and also challenging enough to engage math and computer science majors. To engage students who may not be comfortable with traditional mathematics texts, the book uses a light tone when introducing new concepts. While there is an emphasis on computation, it avoids mathematical formalism and formal proofs, thus making it easier for the average student to understand. Unlike other textbooks in this field, Fundamentals of Discrete Structures strikes just the right balance: it illuminates the essentials of discrete mathematics while still providing a comprehensive treatment of the subject matter.
  discrete mathematics second edition: Introductory Discrete Mathematics V. K. Balakrishnan, 1996-01-01 This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition.
  discrete mathematics second edition: Discrete Mathematics László Lovász, József Pelikán, K. Vesztergombi, 2003-01-27 Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
  discrete mathematics second edition: Invitation to Discrete Mathematics Jiří Matoušek, Jaroslav Nešetřil, 2009 A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.
  discrete mathematics second edition: Discrete Mathematics with Applications Thomas Koshy, 2004-01-19 This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects* Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises* Features interesting anecdotes and biographies of 60 mathematicians and computer scientists* Instructor's Manual available for adopters* Student Solutions Manual available separately for purchase (ISBN: 0124211828)
  discrete mathematics second edition: Discrete Mathematics with Applications Susanna S. Epp, 2018-12-17 Known for its accessible, precise approach, Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, introduces discrete mathematics with clarity and precision. Coverage emphasizes the major themes of discrete mathematics as well as the reasoning that underlies mathematical thought. Students learn to think abstractly as they study the ideas of logic and proof. While learning about logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that ideas of discrete mathematics underlie and are essential to today’s science and technology. The author’s emphasis on reasoning provides a foundation for computer science and upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
  discrete mathematics second edition: Fundamental Approach To Discrete Mathematics D.P. Acharjya, 2005 Salient Features * Mathematical Logic, Fundamental Concepts, Proofs And Mathematical Induction (Chapter 1) * Set Theory, Fundamental Concepts, Theorems, Proofs, Venn Diagrams, Product Of Sets, Application Of Set Theory And Fundamental Products (Chapter 2) * An Introduction To Binary Relations And Concepts, Graphs, Arrow Diagrams, Relation Matrix, Composition Of Relations, Types Of Relation, Partial Order Relations, Total Order Relation, Closure Of Relations, Poset, Equivalence Classes And Partitions. (Chapter 3) * An Introduction To Functions And Basic Concepts, Graphs, Composition Of Functions, Floor And Ceiling Function, Characteristic Function, Remainder Function, Signum Function And Introduction To Hash Function. (Chapter 4) * The Algebraic Structure Includes Group Theory And Ring Theory. Group Theory Includes Group, Subgroups, Cyclic Group, Cosets, Homomorphism, Introduction To Codes And Group Codes And Error Correction For Block Code. The Ring Theory Includes General Definition, Fundamental Concepts, Integral Domain, Division Ring, Subring, Homomorphism, An Isomorphism And Pigeonhole Principle (Chapters 5, 6 And 7) * A Treatment Of Boolean Algebras That Emphasizes The Relation Of Boolean Algebras To Combinatorial Circuits. (Chapter 8) * An Introduction To Lattices And Basic Concepts (Chapter 9) * A Brief Introduction To Graph Theory Is Discussed. Elements Of Graph Theory Are Indispensable In Almost All Computer Science Areas. Examples Are Given Of Its Use In Such Areas As Minimum Spanning Tree, Shortest Path Problems (Dijkastra'S Algorithm And Floyd-Warshall Algorithm) And Traveling Salesman Problem. The Computer Representation And Manipulation Of Graphs Are Also Discussed So That Certain Important Algorithms Can Be Included(Chapters 10 And 11) * A Strong Emphasis Is Given On Understanding The Theorems And Its Applications * Numbers Of Illustrations Are Used Throughout The Book For Explaining The Concepts And Its Applications. * Figures And Tables Are Used To Illustrate Concepts, To Elucidate Proofs And To Motivate The Material. The Captions Of These Figures Provide Additional Explanation. Besides This, A Number Of Exercises Are Given For Practice
  discrete mathematics second edition: Essentials of Discrete Mathematics David J. Hunter, 2015-08-21 Written for the one-term course, the Third Edition of Essentials of Discrete Mathematics is designed to serve computer science majors as well as students from a wide range of disciplines. The material is organized around five types of thinking: logical, relational, recursive, quantitative, and analytical. This presentation results in a coherent outline that steadily builds upon mathematical sophistication. Graphs are introduced early and referred to throughout the text, providing a richer context for examples and applications. tudents will encounter algorithms near the end of the text, after they have acquired the skills and experience needed to analyze them. The final chapter contains in-depth case studies from a variety of fields, including biology, sociology, linguistics, economics, and music.
  discrete mathematics second edition: Discrete Mathematics and Applications Kevin Ferland, 2017-09-19 Discrete Mathematics and Applications, Second Edition is intended for a one-semester course in discrete mathematics. Such a course is typically taken by mathematics, mathematics education, and computer science majors, usually in their sophomore year. Calculus is not a prerequisite to use this book. Part one focuses on how to write proofs, then moves on to topics in number theory, employing set theory in the process. Part two focuses on computations, combinatorics, graph theory, trees, and algorithms. Emphasizes proofs, which will appeal to a subset of this course market Links examples to exercise sets Offers edition that has been heavily reviewed and developed Focuses on graph theory Covers trees and algorithms
  discrete mathematics second edition: Discrete Mathematics Rowan Garnier, John Taylor, 2020-10-28 In a comprehensive yet easy-to-follow manner, Discrete Mathematics for New Technology follows the progression from the basic mathematical concepts covered by the GCSE in the UK and by high-school algebra in the USA to the more sophisticated mathematical concepts examined in the latter stages of the book. The book punctuates the rigorous treatment of theory with frequent uses of pertinent examples and exercises, enabling readers to achieve a feel for the subject at hand. The exercise hints and solutions are provided at the end of the book. Topics covered include logic and the nature of mathematical proof, set theory, relations and functions, matrices and systems of linear equations, algebraic structures, Boolean algebras, and a thorough treatise on graph theory. Although aimed primarily at computer science students, the structured development of the mathematics enables this text to be used by undergraduate mathematicians, scientists, and others who require an understanding of discrete mathematics.
  discrete mathematics second edition: Discrete Mathematics for Computer Science Jon Pierre Fortney, 2020-12-23 Discrete Mathematics for Computer Science: An Example-Based Introduction is intended for a first- or second-year discrete mathematics course for computer science majors. It covers many important mathematical topics essential for future computer science majors, such as algorithms, number representations, logic, set theory, Boolean algebra, functions, combinatorics, algorithmic complexity, graphs, and trees. Features Designed to be especially useful for courses at the community-college level Ideal as a first- or second-year textbook for computer science majors, or as a general introduction to discrete mathematics Written to be accessible to those with a limited mathematics background, and to aid with the transition to abstract thinking Filled with over 200 worked examples, boxed for easy reference, and over 200 practice problems with answers Contains approximately 40 simple algorithms to aid students in becoming proficient with algorithm control structures and pseudocode Includes an appendix on basic circuit design which provides a real-world motivational example for computer science majors by drawing on multiple topics covered in the book to design a circuit that adds two eight-digit binary numbers Jon Pierre Fortney graduated from the University of Pennsylvania in 1996 with a BA in Mathematics and Actuarial Science and a BSE in Chemical Engineering. Prior to returning to graduate school, he worked as both an environmental engineer and as an actuarial analyst. He graduated from Arizona State University in 2008 with a PhD in Mathematics, specializing in Geometric Mechanics. Since 2012, he has worked at Zayed University in Dubai. This is his second mathematics textbook.
  discrete mathematics second edition: Discrete Mathematics Stephen A. Wiitala, 1987
  discrete mathematics second edition: Handbook of Discrete and Combinatorial Mathematics, Second Edition Kenneth H. Rosen, 2016-01-15 The importance of discrete and combinatorial mathematics continues to increase as the range of applications to computer science, electrical engineering, and the biological sciences grows dramatically. Providing a ready reference for practitioners in the field, the Handbook of Discrete and Combinatorial Mathematics, Second Edition presents additional material on Google's matrix, random graphs, geometric graphs, computational topology, and other key topics. New chapters highlight essential background information on bioinformatics and computational geometry. Each chapter includes a glossary, definitions, facts, examples, algorithms, major applications, and references.
  discrete mathematics second edition: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--
  discrete mathematics second edition: Discrete Structures, Logic, and Computability James L. Hein, 2001 Discrete Structure, Logic, and Computability introduces the beginning computer science student to some of the fundamental ideas and techniques used by computer scientists today, focusing on discrete structures, logic, and computability. The emphasis is on the computational aspects, so that the reader can see how the concepts are actually used. Because of logic's fundamental importance to computer science, the topic is examined extensively in three phases that cover informal logic, the technique of inductive proof; and formal logic and its applications to computer science.
  discrete mathematics second edition: How to Prove It Daniel J. Velleman, 2006-01-16 Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
  discrete mathematics second edition: Discrete Mathematics Rowan Garnier, John Taylor, 2009-11-09 Taking an approach to the subject that is suitable for a broad readership, Discrete Mathematics: Proofs, Structures, and Applications, Third Edition provides a rigorous yet accessible exposition of discrete mathematics, including the core mathematical foundation of computer science. The approach is comprehensive yet maintains an easy-to-follow prog
  discrete mathematics second edition: Enumerative Combinatorics: Volume 2 Richard P. Stanley, 2001-06-04 An introduction, suitable for beginning graduate students, showing connections to other areas of mathematics.
  discrete mathematics second edition: Discrete Mathematics Using a Computer Cordelia Hall, John O'Donnell, 2013-04-17 Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools such as proof checkers. These connections are emphasised throughout the book. Software tools (see Appendix A) enable the computer to serve as a calculator, but instead of just doing arithmetic and trigonometric functions, it will be used to calculate with sets, relations, functions, predicates and inferences. There are also special software tools, for example a proof checker for logical proofs using natural deduction.
  discrete mathematics second edition: Practical Discrete Mathematics Ryan T. White, Archana Tikayat Ray, 2021-02-22 A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.
  discrete mathematics second edition: Handbook of Discrete and Combinatorial Mathematics Kenneth H. Rosen, 2017-10-19 Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
  discrete mathematics second edition: Combinatorics and Graph Theory John Harris, Jeffry L. Hirst, Michael Mossinghoff, 2009-04-03 There are certain rules that one must abide by in order to create a successful sequel. — Randy Meeks, from the trailer to Scream 2 While we may not follow the precise rules that Mr. Meeks had in mind for s- cessful sequels, we have made a number of changes to the text in this second edition. In the new edition, we continue to introduce new topics with concrete - amples, we provide complete proofs of almost every result, and we preserve the book’sfriendlystyle andlivelypresentation,interspersingthetextwith occasional jokes and quotations. The rst two chapters, on graph theory and combinatorics, remain largely independent, and may be covered in either order. Chapter 3, on in nite combinatorics and graphs, may also be studied independently, although many readers will want to investigate trees, matchings, and Ramsey theory for nite sets before exploring these topics for in nite sets in the third chapter. Like the rst edition, this text is aimed at upper-division undergraduate students in mathematics, though others will nd much of interest as well. It assumes only familiarity with basic proof techniques, and some experience with matrices and in nite series. The second edition offersmany additionaltopics for use in the classroom or for independentstudy. Chapter 1 includesa new sectioncoveringdistance andrelated notions in graphs, following an expanded introductory section. This new section also introduces the adjacency matrix of a graph, and describes its connection to important features of the graph.
  discrete mathematics second edition: Discrete Mathematics Jean Gallier, 2011-01-25 This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
  discrete mathematics second edition: An Introduction to Cryptography Richard A. Mollin, 2006-09-18 Continuing a bestselling tradition, An Introduction to Cryptography, Second Edition provides a solid foundation in cryptographic concepts that features all of the requisite background material on number theory and algorithmic complexity as well as a historical look at the field. With numerous additions and restructured material, this edition
  discrete mathematics second edition: Discrete Mathematics for Computer Science John Schlipf, Sue Whitesides, Gary Haggard, 2020-09-22 Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented.
  discrete mathematics second edition: A Logical Approach to Discrete Math David Gries, Fred B. Schneider, 2013-03-14 This text attempts to change the way we teach logic to beginning students. Instead of teaching logic as a subject in isolation, we regard it as a basic tool and show how to use it. We strive to give students a skill in the propo sitional and predicate calculi and then to exercise that skill thoroughly in applications that arise in computer science and discrete mathematics. We are not logicians, but programming methodologists, and this text reflects that perspective. We are among the first generation of scientists who are more interested in using logic than in studying it. With this text, we hope to empower further generations of computer scientists and math ematicians to become serious users of logic. Logic is the glue Logic is the glue that binds together methods of reasoning, in all domains. The traditional proof methods -for example, proof by assumption, con tradiction, mutual implication, and induction- have their basis in formal logic. Thus, whether proofs are to be presented formally or informally, a study of logic can provide understanding.
  discrete mathematics second edition: An Introduction to Discrete Mathematics Steven Roman, 1989 Intended for a one-term course in discrete mathematics, to prepare freshmen and sophomores for further work in computer science as well as mathematics. Sets, proof techniques, logic, combinatorics, and graph theory are covered in concise form. All topics are motivated by concrete examples, often emphasizing the interplay between computer science and mathematics. Examples also illustrate all definitions. Applications and references cover a wide variety of realistic situations. Coverage of mathematical induction includes the stroung form of induction, and new sections have been added on nonhomogeneous recurrence relations and the essentials of probability.
  discrete mathematics second edition: Discrete Mathematical Structures for Computer Science Bernard Kolman, Robert C. Busby, 1987 This text has been designed as a complete introduction to discrete mathematics, primarily for computer science majors in either a one or two semester course. The topics addressed are of genuine use in computer science, and are presented in a logically coherent fashion. The material has been organized and interrelated to minimize the mass of definitions and the abstraction of some of the theory. For example, relations and directed graphs are treated as two aspects of the same mathematical idea. Whenever possible each new idea uses previously encountered material, and then developed in such a way that it simplifies the more complex ideas that follow.
  discrete mathematics second edition: Discrete Mathematics for Computing Peter Grossman, 2002-01 Written with a clear and informal style Discrete Mathematics for Computing is aimed at first year undergraduate computing students with very little mathematical background. It is a low-level introductory text which takes the topics at a gentle pace, covering all the essential material that forms the background for studies in computing and information systems. This edition includes new sections on proof methods and recurrences, and the examples have been updated throughout to reflect the changes in computing since the first edition.
  discrete mathematics second edition: Discrete Mathematics with Graph Theory Edgar G. Goodaire, Michael M. Parmenter, 2006 0. Yes, there are proofs! 1. Logic 2. Sets and relations 3. Functions 4. The integers 5. Induction and recursion 6. Principles of counting 7. Permutations and combinations 8. Algorithms 9. Graphs 10. Paths and circuits 11. Applications of paths and circuits 12. Trees 13. Planar graphs and colorings 14. The Max flow-min cut theorem.
  discrete mathematics second edition: Mathematical Thinking John P. D'Angelo, Douglas Brent West, 2018 For one/two-term courses in Transition to Advanced Mathematics or Introduction to Proofs. Also suitable for courses in Analysis or Discrete Math. This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This text is designed to prepare students thoroughly in the logical thinking skills necessary to understand and communicate fundamental ideas and proofs in mathematics-skills vital for success throughout the upperclass mathematics curriculum. The text offers both discrete and continuous mathematics, allowing instructors to emphasize one or to present the fundamentals of both. It begins by discussing mathematical language and proof techniques (including induction), applies them to easily-understood questions in elementary number theory and counting, and then develops additional techniques of proof via important topics in discrete and continuous mathematics. The stimulating exercises are acclaimed for their exceptional quality.
  discrete mathematics second edition: Elements Of Discrete Mathematics 2/E C L Liu, 2000-10-01
  discrete mathematics second edition: Book of Proof Richard H. Hammack, 2016-01-01 This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU …

Expert Solutions for Discrete GPU Idle Issues in NitroSens…
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change …

What does discrete mass effect mean on a radiology report - J…
the “discrete mass” then means arachnoid cyst in this case?I had a non contrast MRI a few months back and …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual …

Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific applications. For NVIDIA: …

Expert Solutions for Discrete GPU Idle Issues in NitroSens…
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to Discrete GPU only. …

What does discrete mass effect mean on a radiology report - J…
the “discrete mass” then means arachnoid cyst in this case?I had a non contrast MRI a few months back and no compression was mentioned now …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild coarsening of the liver echotexture …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not …