Diophantus Contribution To Algebra

Advertisement



  diophantus contribution to algebra: Diophantus of Alexandria Thomas L. Heath, 1910
  diophantus contribution to algebra: Diophantus and Diophantine Equations Isabella Grigoryevna Bashmakova, 2019-01-29 This book tells the story of Diophantine analysis, a subject that, owing to its thematic proximity to algebraic geometry, became fashionable in the last half century and has remained so ever since. This new treatment of the methods of Diophantus--a person whose very existence has long been doubted by most historians of mathematics--will be accessible to readers who have taken some university mathematics. It includes the elementary facts of algebraic geometry indispensable for its understanding. The heart of the book is a fascinating account of the development of Diophantine methods during the.
  diophantus contribution to algebra: Greek Mathematical Thought and the Origin of Algebra Jacob Klein, 2013-04-22 Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
  diophantus contribution to algebra: An Introduction to Diophantine Equations Titu Andreescu, Dorin Andrica, Ion Cucurezeanu, 2010-09-02 This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
  diophantus contribution to algebra: A Book of Abstract Algebra Charles C Pinter, 2010-01-14 Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
  diophantus contribution to algebra: A History of Greek Mathematics Sir Thomas Little Heath, Thomas Little Heath, 1981-01-01 Volume 1 of an authoritative two-volume set that covers the essentials of mathematics and includes every landmark innovation and every important figure. This volume features Euclid, Apollonius, others.
  diophantus contribution to algebra: The Development of Arabic Mathematics: Between Arithmetic and Algebra R. Rashed, 2013-04-18 An understanding of developments in Arabic mathematics between the IXth and XVth century is vital to a full appreciation of the history of classical mathematics. This book draws together more than ten studies to highlight one of the major developments in Arabic mathematical thinking, provoked by the double fecondation between arithmetic and the algebra of al-Khwarizmi, which led to the foundation of diverse chapters of mathematics: polynomial algebra, combinatorial analysis, algebraic geometry, algebraic theory of numbers, diophantine analysis and numerical calculus. Thanks to epistemological analysis, and the discovery of hitherto unknown material, the author has brought these chapters into the light, proposes another periodization for classical mathematics, and questions current ideology in writing its history. Since the publication of the French version of these studies and of this book, its main results have been admitted by historians of Arabic mathematics, and integrated into their recent publications. This book is already a vital reference for anyone seeking to understand history of Arabic mathematics, and its contribution to Latin as well as to later mathematics. The English translation will be of particular value to historians and philosophers of mathematics and of science.
  diophantus contribution to algebra: The Algebra of Mohammed Ben Musa Edited and Translated by Frederic Rosen Muḥammad ibn Mūsā al-Khuwārizmī, 1831
  diophantus contribution to algebra: An Adventurer's Guide to Number Theory Richard Friedberg, 1968 Presents an historical approach to number theory, treating the properties of numbers as abstract concepts, and encouraging the young student to use his imagination.
  diophantus contribution to algebra: A History of Algebra Bartel L. van der Waerden, 2013-06-29
  diophantus contribution to algebra: The Analytic Art François Viète, T. Richard Witmer, 2006-01-01 This historic work consists of several treatises that developed the first consistent, coherent, and systematic conception of algebraic equations. Originally published in 1591, it pioneered the notion of using symbols of one kind (vowels) for unknowns and of another kind (consonants) for known quantities, thus streamlining the solution of equations. Francois Viète (1540-1603), a lawyer at the court of King Henry II in Tours and Paris, wrote several treatises that are known collectively as The Analytic Art. His novel approach to the study of algebra developed the earliest articulated theory of equations, allowing not only flexibility and generality in solving linear and quadratic equations, but also something completely new—a clear analysis of the relationship between the forms of the solutions and the values of the coefficients of the original equation. Viète regarded his contribution as developing a systematic way of thinking leading to general solutions, rather than just a bag of tricks to solve specific problems. These essays demonstrate his method of applying his own ideas to existing usage in ways that led to clear formulation and solution of equations.
  diophantus contribution to algebra: Recreations in Mathematics and Natural Philosophy, Recomposed by M. Montucla and Tr. by C. Hutton Jacques Ozanam, 2022-10-27 This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
  diophantus contribution to algebra: Great Moments in Mathematics (before 1650) Howard Whitley Eves, 1983 [V.2] This is a companion to Great moments in mathematics before 1650. It can be appreciated by anyone with a working knowledge of beginning deferential and integral calculus. Includes: the birth of mathematical probability, the invention of the differential calculus, the discovery of non-Euclidean geometry, the discovery of noncommutative algebra, and the resolution of the four-color problem.
  diophantus contribution to algebra: Making up Numbers: A History of Invention in Mathematics Ekkehard Kopp, 2020-10-23 Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
  diophantus contribution to algebra: Non-diophantine Arithmetics In Mathematics, Physics And Psychology Mark Burgin, Marek Czachor, 2020-11-04 For a long time, all thought there was only one geometry — Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications of mathematics.A similar event happened in arithmetic in the 20th century. Even longer than with geometry, all thought there was only one conventional arithmetic of natural numbers — the Diophantine arithmetic, in which 2+2=4 and 1+1=2. It is natural to call the conventional arithmetic by the name Diophantine arithmetic due to the important contributions to arithmetic by Diophantus. Nevertheless, in the 20th century, many non-Diophantine arithmetics were discovered, in some of which 2+2=5 or 1+1=3. It took more than two millennia to do this. This discovery has even more implications than the discovery of new geometries because all people use arithmetic.This book provides a detailed exposition of the theory of non-Diophantine arithmetics and its various applications. Reading this book, the reader will see that on the one hand, non-Diophantine arithmetics continue the ancient tradition of operating with numbers while on the other hand, they introduce extremely original and innovative ideas.
  diophantus contribution to algebra: Elliptic Curves S. Lang, 2013-06-29 It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
  diophantus contribution to algebra: Elliptic Tales Avner Ash, Robert Gross, 2012 Describes the latest developments in number theory by looking at the Birch and Swinnerton-Dyer Conjecture.
  diophantus contribution to algebra: Analytic Methods for Diophantine Equations and Diophantine Inequalities H. Davenport, 2005-02-07 Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.
  diophantus contribution to algebra: The Nature and Growth of Modern Mathematics Edna Ernestine Kramer, 1982 Now available in a one-volume paperback, this book traces the development of the most important mathematical concepts, giving special attention to the lives and thoughts of such mathematical innovators as Pythagoras, Newton, Poincare, and Godel. Beginning with a Sumerian short story--ultimately linked to modern digital computers--the author clearly introduces concepts of binary operations; point-set topology; the nature of post-relativity geometries; optimization and decision processes; ergodic theorems; epsilon-delta arithmetization; integral equations; the beautiful ideals of Dedekind and Emmy Noether; and the importance of purifying mathematics. Organizing her material in a conceptual rather than a chronological manner, she integrates the traditional with the modern, enlivening her discussions with historical and biographical detail.
  diophantus contribution to algebra: Fibonacci’s Liber Abaci Laurence Sigler, 2003-11-11 First published in 1202, Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages, introducing Arabic numerals and methods throughout Europe. This is the first translation into a modern European language, of interest not only to historians of science but also to all mathematicians and mathematics teachers interested in the origins of their methods.
  diophantus contribution to algebra: Introduction to Analytic Number Theory Tom M. Apostol, 1998-05-28 This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages.-—MATHEMATICAL REVIEWS
  diophantus contribution to algebra: Brill's Companion to the Reception of Ancient Rhetoric Sophia Papaioannou, Andreas Serafim, Michael Edwards, 2022 This volume, examining the reception of ancient rhetoric, aims to demonstrate that the past is always part of the present: in the ways in which decisions about crucial political, social and economic matters have been made historically; or in organic interaction with literature, philosophy and culture at the core of the foundation principles of Western thought and values. Analysis is meant to cover the broadest possible spectrum of considerations that focus on the totality of rhetorical species (i.e. forensic, deliberative and epideictic) as they are applied to diversified topics (including, but not limited to, language, science, religion, literature, theatre and other cultural processes (e.g. athletics), politics and leadership, pedagogy and gender studies) and cross-cultural, geographical and temporal contexts--
  diophantus contribution to algebra: A History of Elementary Mathematics Florian Cajori, 1898
  diophantus contribution to algebra: Līlāvatī of Bhāskarācārya Bhāskarācārya, 2001 In 1150 AD, Bhaskaracarya (b. 1114 AD), renowned mathematician and astronomer of Vedic tradition composed Lilavati as the first part of his larger work called Siddhanta Siromani, a comprehensive exposition of arithmetic, algebra, geometry, mensuration, number theory and related topics. Lilavati has been used as a standard textbook for about 800 years. This lucid, scholarly and literary presentation has been translated into several languages of the world. Bhaskaracarya himself never gave any derivations of his formulae. N.H. Phadke (1902-1973) worked hard to construct proofs of several mathematical methods and formulae given in original Lilavati. The present work is an enlargement of his Marathi work and attempts a thorough mathematical explanation of definitions, formulae, short cuts and methodology as intended by Bhaskara. Stitches are followed by literal translations so that the reader can enjoy and appreciate the beauty of accurate and musical presentation in Lilavati. The book is useful to school going children, sophomores, teachers, scholars, historians and those working for cause of mathematics.
  diophantus contribution to algebra: A Short Account of the History of Mathematics Walter William Rouse Ball, 1908
  diophantus contribution to algebra: Critical Mathematics Education Paul Ernest, Bharath Sriraman, Nuala Ernest, 2016-01-01 Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.
  diophantus contribution to algebra: Rational Points on Elliptic Curves Joseph H. Silverman, John Tate, 2013-04-17 In 1961 the second author deliv1lred a series of lectures at Haverford Col lege on the subject of Rational Points on Cubic Curves. These lectures, intended for junior and senior mathematics majors, were recorded, tran scribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and por tions have appeared in various textbooks (Husemoller [1], Chahal [1]), but they have never appeared in their entirety. In view of the recent inter est in the theory of elliptic curves for subjects ranging from cryptogra phy (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the orig inal Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is readable by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove.
  diophantus contribution to algebra: The Saga of Mathematics Marty Lewinter, William Widulski, 2001 For undergraduate-level courses in the History of Mathematics, or Liberal Arts Mathematics. Perfect for the non-math major, this inexpensive paperback text uses lively language to put mathematics in an interesting, historical context and points out the many links to art, philosophy, music, computers, navigation, science, and technology. The arithmetic, algebra, and geometry are presented in a way that makes them relevant to daily life as well as larger issues.
  diophantus contribution to algebra: The Origin of the Logic of Symbolic Mathematics Burt C. Hopkins, 2011 Burt C. Hopkins presents the first in-depth study of the work of Edmund Husserl and Jacob Klein on the philosophical foundations of the logic of modern symbolic mathematics. Accounts of the philosophical origins of formalized concepts—especially mathematical concepts and the process of mathematical abstraction that generates them—have been paramount to the development of phenomenology. Both Husserl and Klein independently concluded that it is impossible to separate the historical origin of the thought that generates the basic concepts of mathematics from their philosophical meanings. Hopkins explores how Husserl and Klein arrived at their conclusion and its philosophical implications for the modern project of formalizing all knowledge.
  diophantus contribution to algebra: Ancient Indian Leaps into Mathematics B.S. Yadav, Man Mohan, 2011-01-20 This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Through a systematic approach, this book examines these ancient mathematical ideas that were spread throughout India, China, the Islamic world, and Western Europe.
  diophantus contribution to algebra: The Princeton Companion to Mathematics Timothy Gowers, June Barrow-Green, Imre Leader, 2010-07-18 The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
  diophantus contribution to algebra: God Created The Integers Stephen Hawking, 2007-03-29 Bestselling author and physicist Stephen Hawking explores the masterpieces of mathematics, 25 landmarks spanning 2,500 years and representing the work of 15 mathematicians, including Augustin Cauchy, Bernard Riemann, and Alan Turing. This extensive anthology allows readers to peer into the mind of genius by providing them with excerpts from the original mathematical proofs and results. It also helps them understand the progression of mathematical thought, and the very foundations of our present-day technologies. Each chapter begins with a biography of the featured mathematician, clearly explaining the significance of the result, followed by the full proof of the work, reproduced from the original publication.
  diophantus contribution to algebra: Mathematical Thought From Ancient to Modern Times Morris Kline, 1990-03 Traces the development of mathematics from its beginnings in Babylonia and ancient Egypt to the work of Riemann and Godel in modern times.
  diophantus contribution to algebra: Unknown Quantity John Derbyshire, 2006-06-02 Prime Obsession taught us not to be afraid to put the math in a math book. Unknown Quantity heeds the lesson well. So grab your graphing calculators, slip out the slide rules, and buckle up! John Derbyshire is introducing us to algebra through the ages-and it promises to be just what his die-hard fans have been waiting for. Here is the story of algebra. With this deceptively simple introduction, we begin our journey. Flanked by formulae, shadowed by roots and radicals, escorted by an expert who navigates unerringly on our behalf, we are guaranteed safe passage through even the most treacherous mathematical terrain. Our first encounter with algebraic arithmetic takes us back 38 centuries to the time of Abraham and Isaac, Jacob and Joseph, Ur and Haran, Sodom and Gomorrah. Moving deftly from Abel's proof to the higher levels of abstraction developed by Galois, we are eventually introduced to what algebraists have been focusing on during the last century. As we travel through the ages, it becomes apparent that the invention of algebra was more than the start of a specific discipline of mathematics-it was also the birth of a new way of thinking that clarified both basic numeric concepts as well as our perception of the world around us. Algebraists broke new ground when they discarded the simple search for solutions to equations and concentrated instead on abstract groups. This dramatic shift in thinking revolutionized mathematics. Written for those among us who are unencumbered by a fear of formulae, Unknown Quantity delivers on its promise to present a history of algebra. Astonishing in its bold presentation of the math and graced with narrative authority, our journey through the world of algebra is at once intellectually satisfying and pleasantly challenging.
  diophantus contribution to algebra: Algebra John Tabak, 2014-05-14 Algebra developed independently in several places around the world, with Hindu, Greek, and Arabic ideas and problems arising at different points in history.
  diophantus contribution to algebra: The Beginnings of Greek Mathematics A. Szabó, 2013-03-09 When this book was first published, more than five years ago, I added an appendix on How the Pythagoreans discovered Proposition 11.5 of the 'Elements'. I hoped that this appendix, although different in some ways from the rest of the book, would serve to illustrate the kind of research which needs to be undertaken, if we are to acquire a new understanding of the historical development of Greek mathematics. It should perhaps be mentioned that this book is not intended to be an introduction to Greek mathematics for the general reader; its aim is to bring the problems associated with the early history of deductive science to the attention of classical scholars, and historians and philos ophers of science. I should like to conclude by thanking my translator, Mr. A. M. Ungar, who worked hard to produce something more than a mechanical translation. Much of his work was carried out during the year which I spent at Stanford as a fellow of the Center for Advanced Study in the Behavioral Sciences. This enabled me to supervise the work of transla tion as it progressed. I am happy to express my gratitude to the Center for providing me with this opportunity. Arpad Szabo NOTE ON REFERENCES The following books are frequently referred to in the notes. Unless otherwise stated, the editions are those given below. Burkert, W. Weisheit und Wissensclzaft, Studien zu Pythagoras, Philo laos und Platon, Nuremberg 1962.
  diophantus contribution to algebra: The Arithmetica of Diophantus Jean Christianidis, Jeffrey Oaks, 2022-11-01 This volume offers an English translation of all ten extant books of Diophantus of Alexandria’s Arithmetica, along with a comprehensive conceptual, historical, and mathematical commentary. Before his work became the inspiration for the emerging field of number theory in the seventeenth century, Diophantus (ca. 3rd c. CE) was known primarily as an algebraist. This volume explains how his method of solving arithmetical problems agrees both conceptually and procedurally with the premodern algebra later practiced in Arabic, Latin, and European vernaculars, and how this algebra differs radically from the modern algebra initiated by François Viète and René Descartes. It also discusses other surviving traces of ancient Greek algebra and follows the influence of the Arithmetica in medieval Islam, Byzantium, and the European Renaissance down to the 1621 publication of Claude-Gaspard Bachet’s edition. After the English translation the book provides a problem-by-problem commentary explaining the solutions in a manner compatible with Diophantus’s mode of thought. The Arithmetica of Diophantus provides an invaluable resource for historians of mathematics, science, and technology, as well as those studying ancient Greek, medieval Islamic and Byzantine, and Renaissance history. In addition, the volume is also suitable for mathematicians and mathematics educators.
  diophantus contribution to algebra: Travelling Mathematics - The Fate of Diophantos' Arithmetic Ad Meskens, 2010-09-24 In this book the author presents a comprehensive study of Diophantos’ monumental work known as Arithmetika, a highly acclaimed and unique set of books within the known Greek mathematical corpus. Its author, Diophantos, is an enigmatic figure of whom we know virtually nothing. Starting with Egyptian, Babylonian and early Greek mathematics the author paints a picture of the sources the Arithmetika may have had. Life in Alexandria, where Diophantos lived, is described and, on the basis of the limited available evidence, his biography is outlined. Of Arithmetika’s 13 books only 6 survive in Greek. It was not until 1971 that these were complemented by the discovery of 4 other books in an Arab translation. This allows the author to describe the structure, the contents and the mathematics of the Arithmetika in detail. Furthermore it is shown that Diophantos had a remarkable skill to solve higher degree equations. In the second part, the author draws our attention to the survival of Diophantos’ work in both Arab and European mathematical cultures. Once Xylander’s critical 1575 edition reached its European public, the fame of the Arithmetika grew. It was studied, translated and modified by such authors as Bombelli, Stevin and Viète. It reached its pinnacle of fame in 1621 with the publication of Bachet’s translation into Latin. The marginal notes by Fermat in his copy of Diophantos, including his famous “Last Theorem”, were the starting point of a whole new research subject: the theory of numbers.
  diophantus contribution to algebra: The Geometry of René Descartes René Descartes, 2012-09-19 The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. The greatest single step ever made in the progress of the exact sciences. — John Stuart Mill.
  diophantus contribution to algebra: The Development of Mathematics Throughout the Centuries Brian Evans, 2014-02-24 Throughout the book, readers take a journey throughout time and observe how people around the world have understood these patterns of quantity, structure, and dimension around them. The Development of Mathematics Throughout the Centuries: A Brief History in a Cultural Contex provides a brief overview of the history of mathematics in a very straightforward and understandable manner and also addresses major findings that influenced the development of mathematics as a coherent discipline. This book: Highlights the contributions made by various world cultures including African, Egyptian, Babylonian, Chinese, Indian, Islamic, and pre-Columbian American mathematics Features an approach that is not too rigorous and is ideal for a one-semester course of the history of mathematics. Includes a Resources and Recommended Reading section for further exploration and has been extensively classroom-tested
Diophantus' Lifespan - Mathematics Stack Exchange
Today I saw Diophantus' Epitaph. For those of you who don't know it and don't feel like googling: 'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God...

reference request - Is there an English translation of Diophantus's ...
Aug 24, 2011 · Is Heath's book really a translation? It seems more like a book ABOUT Diophantus's "Arithmetica", not the translation of the actual book. There's just an "abstract" …

How to solve the problem that determines the age of Diophantus?
Let D D be the number of years Diophantus lived, and S S the number of years his son lived. First we make an obvious relation, that his son lived for half his own lifetime.

Are problems in "Arithmetica" of Diophantus all solved now?
Jan 31, 2019 · It's well-known that Diophantus had written ”Diophantus“ which contains many problems about solving arithmetic equations. I wonder whether all of them has been solved …

Fermat's Notes on Diophantus - Mathematics Stack Exchange
Aug 17, 2016 · I am looking for a free online copy of Diophantus' Arithmetica as well as Fermat's Notes on it. After some google searching, I couldn't find any. Thanks for your help! Edit: …

How to find solutions of linear Diophantine ax + by = c?
The diophantine equation ax + by = c has solutions if and only if gcd(a, b) c. If so, it has infinitely many solutions, and any one solution can be used to generate all the other ones. To see this, …

abstract algebra - Diophantus math - Mathematics Stack Exchange
Diophantus math Ask Question Asked 11 years, 7 months ago Modified 11 years, 7 months ago

Nonlinear system Diophantus. - Mathematics Stack Exchange
Aug 18, 2015 · In the extant books of Diophantus, are considered in the system of equations. Of interest is the non-linear system of Diophantine equations. Some simple systems from his …

Question on proving Primitive Pythagorean triples using …
Jan 25, 2020 · Question on proving Primitive Pythagorean triples using Diophantus method? [duplicate] Ask Question Asked 5 years, 4 months ago Modified 5 years, 4 months ago

abstract algebra - Diophantus mathematics - Mathematics Stack …
Find a number whose subtraction from two given numbers (say, $9$ and $21$) allows both differences to be squares. Call the required number $9 - x^2$ so that the condition holds …

Diophantus' Lifespan - Mathematics Stack Exchange
Today I saw Diophantus' Epitaph. For those of you who don't know it and don't feel like googling: 'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God...

reference request - Is there an English translation of Diophantus's ...
Aug 24, 2011 · Is Heath's book really a translation? It seems more like a book ABOUT Diophantus's "Arithmetica", not the translation of the actual book. There's just an "abstract" …

How to solve the problem that determines the age of Diophantus?
Let D D be the number of years Diophantus lived, and S S the number of years his son lived. First we make an obvious relation, that his son lived for half his own lifetime.

Are problems in "Arithmetica" of Diophantus all solved now?
Jan 31, 2019 · It's well-known that Diophantus had written ”Diophantus“ which contains many problems about solving arithmetic equations. I wonder whether all of them has been solved …

Fermat's Notes on Diophantus - Mathematics Stack Exchange
Aug 17, 2016 · I am looking for a free online copy of Diophantus' Arithmetica as well as Fermat's Notes on it. After some google searching, I couldn't find any. Thanks for your help! Edit: …

How to find solutions of linear Diophantine ax + by = c?
The diophantine equation ax + by = c has solutions if and only if gcd(a, b) c. If so, it has infinitely many solutions, and any one solution can be used to generate all the other ones. To see this, …

abstract algebra - Diophantus math - Mathematics Stack Exchange
Diophantus math Ask Question Asked 11 years, 7 months ago Modified 11 years, 7 months ago

Nonlinear system Diophantus. - Mathematics Stack Exchange
Aug 18, 2015 · In the extant books of Diophantus, are considered in the system of equations. Of interest is the non-linear system of Diophantine equations. Some simple systems from his …

Question on proving Primitive Pythagorean triples using …
Jan 25, 2020 · Question on proving Primitive Pythagorean triples using Diophantus method? [duplicate] Ask Question Asked 5 years, 4 months ago Modified 5 years, 4 months ago

abstract algebra - Diophantus mathematics - Mathematics Stack …
Find a number whose subtraction from two given numbers (say, $9$ and $21$) allows both differences to be squares. Call the required number $9 - x^2$ so that the condition holds …