Advertisement
durrett rick probability theory and examples: Probability Rick Durrett, 2010-08-30 This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject. |
durrett rick probability theory and examples: Probability Richard Durrett, Rick Durrett, 2019-04-18 A well-written and lively introduction to measure theoretic probability for graduate students and researchers. |
durrett rick probability theory and examples: Elementary Probability for Applications Rick Durrett, 2009-07-31 This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management. |
durrett rick probability theory and examples: Essentials of Stochastic Processes Richard Durrett, 2016-11-07 Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance. |
durrett rick probability theory and examples: Probability Models for DNA Sequence Evolution Rick Durrett, 2013-03-09 Our basic question is: Given a collection of DNA sequences, what underlying forces are responsible for the observed patterns of variability? To approach this question we introduce and analyze a number of probability models: the Wright-Fisher model, the coalescent, the infinite alleles model, and the infinite sites model. We study the complications that come from nonconstant population size, recombination, population subdivision, and three forms of natural selection: directional selection, balancing selection, and background selection. These theoretical results set the stage for the investigation of various statistical tests to detect departures from neutral evolution. The final chapter studies the evolution of whole genomes by chromosomal inversions, reciprocal translocations, and genome duplication. Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies from the biology literature that illustrate the use of these results. This book is written for mathematicians and for biologists alike. We assume no previous knowledge of concepts from biology and only a basic knowledge of probability: a one semester undergraduate course and some familiarity with Markov chains and Poisson processes. Rick Durrett received his Ph.D. in operations research from Stanford University in 1976. He taught in the UCLA mathematics department before coming to Cornell in 1985. He is the author of six books and 125 research papers, and is the academic father of more than 30 Ph.D. students. His current interests are the use of probability models in genetics and ecology, and decreasing the mean and variance of his golf. |
durrett rick probability theory and examples: A Probability Path Sidney I. Resnick, 2013-11-30 |
durrett rick probability theory and examples: Random Graph Dynamics Rick Durrett, 2010-05-31 The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At about the same time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. While this literature is extensive, many of the papers are based on simulations and nonrigorous arguments. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature of this book is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter. |
durrett rick probability theory and examples: Probability with Martingales David Williams, 1991-02-14 This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory. |
durrett rick probability theory and examples: Branching Process Models of Cancer Richard Durrett, 2015-06-20 This volume develops results on continuous time branching processes and applies them to study rate of tumor growth, extending classic work on the Luria-Delbruck distribution. As a consequence, the author calculate the probability that mutations that confer resistance to treatment are present at detection and quantify the extent of tumor heterogeneity. As applications, the author evaluate ovarian cancer screening strategies and give rigorous proofs for results of Heano and Michor concerning tumor metastasis. These notes should be accessible to students who are familiar with Poisson processes and continuous time Markov chains. Richard Durrett is a mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D students. Most of his current research concerns the applications of probability to biology: ecology, genetics and most recently cancer. |
durrett rick probability theory and examples: Theory of Probability and Random Processes Leonid Koralov, Yakov G. Sinai, 2007-08-10 A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion. |
durrett rick probability theory and examples: Probability Leo Breiman, 1968-01-01 Well known for the clear, inductive nature of its exposition, this reprint volume is an excellent introduction to mathematical probability theory. It may be used as a graduate-level text in one- or two-semester courses in probability for students who are familiar with basic measure theory, or as a supplement in courses in stochastic processes or mathematical statistics. Designed around the needs of the student, this book achieves readability and clarity by giving the most important results in each area while not dwelling on any one subject. Each new idea or concept is introduced from an intuitive, common-sense point of view. Students are helped to understand why things work, instead of being given a dry theorem-proof regime. |
durrett rick probability theory and examples: Probability and Stochastics Erhan Çınlar, 2011-02-21 This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author’s lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President’s Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style. |
durrett rick probability theory and examples: The Argument of Mathematics Andrew Aberdein, Ian J Dove, 2013-07-01 Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. The book begins by first challenging the assumption that there is no role for informal logic in mathematics. Next, it details the usefulness of argumentation theory in the understanding of mathematical practice, offering an impressively diverse set of examples, covering the history of mathematics, mathematics education and, perhaps surprisingly, formal proof verification. From there, the book demonstrates that mathematics also offers a valuable testbed for argumentation theory. Coverage concludes by defending attention to mathematical argumentation as the basis for new perspectives on the philosophy of mathematics. |
durrett rick probability theory and examples: First Look At Rigorous Probability Theory, A (2nd Edition) Jeffrey S Rosenthal, 2006-11-14 This textbook is an introduction to probability theory using measure theory. It is designed for graduate students in a variety of fields (mathematics, statistics, economics, management, finance, computer science, and engineering) who require a working knowledge of probability theory that is mathematically precise, but without excessive technicalities. The text provides complete proofs of all the essential introductory results. Nevertheless, the treatment is focused and accessible, with the measure theory and mathematical details presented in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects. In this new edition, many exercises and small additional topics have been added and existing ones expanded. The text strikes an appropriate balance, rigorously developing probability theory while avoiding unnecessary detail. |
durrett rick probability theory and examples: The Essentials of Probability Richard Durrett, 1994 Offering a clear treatment of probability focused on problem solving, Richard Durrett presents only the essentials of probability, allowing instructors to cover this entire book in one semester. Each topic moves from the specific to the general, beginning with one or more examples that lead to theoretical results. A large number of examples and exercises relate applications to everyday life. |
durrett rick probability theory and examples: Measure Theory and Probability Malcolm Adams, Victor Guillemin, 2013-04-17 ...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students.—The Journal of the American Statistical Association |
durrett rick probability theory and examples: A Modern Approach to Probability Theory Bert E. Fristedt, Lawrence F. Gray, 1996-12-23 Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas. |
durrett rick probability theory and examples: Random Geometric Graphs Mathew Penrose, 2003 This monograph provides and explains the mathematics behind geometric graph theory. Applications of this theory are used on the study of neural networks, spread of disease, astrophysics and spatial statistics. |
durrett rick probability theory and examples: Stochastic Calculus for Finance Marek Capiński, Ekkehard Kopp, Janusz Traple, 2012-08-23 This book focuses specifically on the key results in stochastic processes that have become essential for finance practitioners to understand. The authors study the Wiener process and Itô integrals in some detail, with a focus on results needed for the Black–Scholes option pricing model. After developing the required martingale properties of this process, the construction of the integral and the Itô formula (proved in detail) become the centrepiece, both for theory and applications, and to provide concrete examples of stochastic differential equations used in finance. Finally, proofs of the existence, uniqueness and the Markov property of solutions of (general) stochastic equations complete the book. Using careful exposition and detailed proofs, this book is a far more accessible introduction to Itô calculus than most texts. Students, practitioners and researchers will benefit from its rigorous, but unfussy, approach to technical issues. Solutions to the exercises are available online. |
durrett rick probability theory and examples: Eigenvalues, Inequalities, and Ergodic Theory Mufa Chen, 2005-01-10 The first and only book to make this research available in the West Concise and accessible: proofs and other technical matters are kept to a minimum to help the non-specialist Each chapter is self-contained to make the book easy-to-use |
durrett rick probability theory and examples: Knowing the Odds John B. Walsh, 2012-09-06 John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. --Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas so the reader never loses sight of the forest by being surrounded by too many trees. As noted in the preface, ``To teach a course with pleasure, one should learn at the same time.'' Indeed, almost all instructors will learn something new from the book (e.g. the potential-theoretic proof of Skorokhod embedding) and at the same time, it is attractive and approachable for students. --Yuval Peres, Microsoft With many examples in each section that enhance the presentation, this book is a welcome addition to the collection of books that serve the needs of advanced undergraduate as well as first year graduate students. The pace is leisurely which makes it more attractive as a text. --Srinivasa Varadhan, Courant Institute, New York This book covers in a leisurely manner all the standard material that one would want in a full year probability course with a slant towards applications in financial analysis at the graduate or senior undergraduate honors level. It contains a fair amount of measure theory and real analysis built in but it introduces sigma-fields, measure theory, and expectation in an especially elementary and intuitive way. A large variety of examples and exercises in each chapter enrich the presentation in the text. |
durrett rick probability theory and examples: Theoretical Statistics Robert W. Keener, 2010-09-08 Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix. |
durrett rick probability theory and examples: A User's Guide to Measure Theoretic Probability David Pollard, 2001-12-10 Rigorous probabilistic arguments, built on the foundation of measure theory introduced eighty years ago by Kolmogorov, have invaded many fields. Students of statistics, biostatistics, econometrics, finance, and other changing disciplines now find themselves needing to absorb theory beyond what they might have learned in the typical undergraduate, calculus-based probability course. This 2002 book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean. |
durrett rick probability theory and examples: Introduction to Analysis Maxwell Rosenlicht, 1986-01-01 Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. Rigorous and carefully presented, the text assumes a year of calculus and features problems at the end of each chapter. 1968 edition. |
durrett rick probability theory and examples: Probability and Statistics Arak M. Mathai, Hans J. Haubold, 2017-12-18 This book offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. As a companion for classes for engineers and scientists, the book also covers applied topics such as model building and experiment design. Contents Random phenomena Probability Random variables Expected values Commonly used discrete distributions Commonly used density functions Joint distributions Some multivariate distributions Collection of random variables Sampling distributions Estimation Interval estimation Tests of statistical hypotheses Model building and regression Design of experiments and analysis of variance Questions and answers |
durrett rick probability theory and examples: Stochastic Simulation and Monte Carlo Methods Carl Graham, Denis Talay, 2013-07-16 In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations. |
durrett rick probability theory and examples: Probability: A Graduate Course Allan Gut, 2006-03-16 I know it's trivial, but I have forgotten why. This is a slightly exaggerated characterization of the unfortunate attitude of many mathematicians toward the surrounding world. The point of departure of this book is the opposite. This textbook on the theory of probability is aimed at graduate students, with the ideology that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to chapters on inequalities, characteristic functions, convergence, followed by the three main subjects, the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The main feature of this book is the combination of rigor and detail. Instead of being sketchy and leaving lots of technicalities to be filled in by the reader or as easy exercises, a more solid foundation is obtained by providing more of those not so trivial matters and by integrating some of those not so simple exercises and problems into the body of text. Some results have been given more than one proof in order to illustrate the pros and cons of different approaches. On occasion we invite the reader to minor extensions, for which the proofs reduce to minor modifications of existing ones, with the aim of creating an atmosphere of a dialogue with the reader (instead of the more typical monologue), in order to put the reader in the position to approach any other text for which a solid probabilistic foundation is necessary. Allan Gut is a professor of Mathematical Statistics at Uppsala University, Uppsala, Sweden. He is the author of the Springer monograph Stopped Random Walks (1988), the Springer textbook An Intermediate Course in Probability (1995), and has published around 60 articles in probability theory. His interest in attracting amore general audience to the beautiful world of probability has been manifested in his Swedish popular science book Sant eller Sannolikt (True or Probable), Norstedts förlag (2002). From the reviews: This is more substantial than the usual graduate course in probability; it contains many useful and interesting details that previously were scattered around the literature and gives clear evidence that the writer has a great deal of experience in the area. Short Book Reviews of the International Statistical Institute, December 2005 ...This book is a readable, comprehensive, and up-to-date introductory textbook to probability theory with emphasis on limit theorems for sums and extremes of random variables. The purchase is worth its price. Journal of the American Statistical Association, June 2006 |
durrett rick probability theory and examples: Probability Theory Vincent F. Hendricks, Stig Andur Pedersen, Klaus Frovin Jørgensen, 2001-06-30 A collection of papers presented at the conference on Probability Theory - Philosophy, Recent History and Relations to Science, University of Roskilde, Denmark, September 16-18, 1998. Since the measure theoretical definition of probability was proposed by Kolmogorov, probability theory has developed into a mature mathematical theory. It is today a fruitful field of mathematics that has important applications in philosophy, science, engineering, and many other areas. The measure theoretical definition of probability and its axioms, however, are not without their problems; some of them even puzzled Kolmogorov. This book sheds light on some recent discussions of the problems in probability theory and their history, analysing their philosophical and mathematical significance, and the role pf mathematical probability theory in other sciences. |
durrett rick probability theory and examples: Mathematical Writing Franco Vivaldi, 2014-11-04 This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student. The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition. Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150 of them have complete solutions, to facilitate self-study. Mathematical Writing will be of interest to all mathematics students who want to raise the quality of their coursework, reports, exams, and dissertations. |
durrett rick probability theory and examples: Probability Theory: STAT310/MATH230 Amir Dembo, 2014-10-24 Probability Theory: STAT310/MATH230By Amir Dembo |
durrett rick probability theory and examples: Convergence of Probability Measures Patrick Billingsley, 2013-06-25 A new look at weak-convergence methods in metric spaces-from a master of probability theory In this new edition, Patrick Billingsley updates his classic work Convergence of Probability Measures to reflect developments of the past thirty years. Widely known for his straightforward approach and reader-friendly style, Dr. Billingsley presents a clear, precise, up-to-date account of probability limit theory in metric spaces. He incorporates many examples and applications that illustrate the power and utility of this theory in a range of disciplines-from analysis and number theory to statistics, engineering, economics, and population biology. With an emphasis on the simplicity of the mathematics and smooth transitions between topics, the Second Edition boasts major revisions of the sections on dependent random variables as well as new sections on relative measure, on lacunary trigonometric series, and on the Poisson-Dirichlet distribution as a description of the long cycles in permutations and the large divisors of integers. Assuming only standard measure-theoretic probability and metric-space topology, Convergence of Probability Measures provides statisticians and mathematicians with basic tools of probability theory as well as a springboard to the industrial-strength literature available today. |
durrett rick probability theory and examples: Linear Algebra and Optimization for Machine Learning Charu C. Aggarwal, 2020-05-13 This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning. |
durrett rick probability theory and examples: Probability Essentials Jean Jacod, Philip Protter, 2012-12-06 We present here a one-semester course on Probability Theory. We also treat measure theory and Lebesgue integration, concentrating on those aspects which are especially germane to the study of Probability Theory. The book is intended to fill a current need: there are mathematically sophisticated stu dents and researchers (especially in Engineering, Economics, and Statistics) who need a proper grounding in Probability in order to pursue their primary interests. Many Probability texts available today are celebrations of Prob ability Theory, containing treatments of fascinating topics to be sure, but nevertheless they make it difficult to construct a lean one semester course that covers (what we believe are) the essential topics. Chapters 1-23 provide such a course. We have indulged ourselves a bit by including Chapters 24-28 which are highly optional, but which may prove useful to Economists and Electrical Engineers. This book had its origins in a course the second author gave in Perugia, Italy, in 1997; he used the samizdat notes of the first author, long used for courses at the University of Paris VI, augmenting them as needed. The result has been further tested at courses given at Purdue University. We thank the indulgence and patience of the students both in Perugia and in West Lafayette. We also thank our editor Catriona Byrne, as weil as Nick Bingham for many superb suggestions, an anonymaus referee for the same, and Judy Mitchell for her extraordinary typing skills. Jean Jacod, Paris Philip Protter, West Lafayette Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . |
durrett rick probability theory and examples: Quantum Probability Stanley Gudder, 1988-08-28 Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism. Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles. The first two chapters survey the necessary background in quantum mechanics and probability theory and therefore the book is fairly self-contained, assuming only an elementary knowledge of linear operators in Hilbert space. |
durrett rick probability theory and examples: Measure, Integration & Real Analysis Sheldon Axler, 2019-12-24 This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. |
durrett rick probability theory and examples: Probability David J. Morin, 2016 Preface -- Combinatorics -- Probability -- Expectation values -- Distributions -- Gaussian approximations -- Correlation and regression -- Appendices. |
durrett rick probability theory and examples: Probability and Measure Patrick Billingsley, 2017 Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes |
durrett rick probability theory and examples: A Course in Probability Theory Kai Lai Chung, 1974-04-28 Distribution function; Measure theory; Random variable. Expectation. Independence; Convergence concepts; Law of large numbers. Random series; Characteristic function; Central limit theorem and its ramifications; Random walk; Conditioning. Markov property. Martingale. |
durrett rick probability theory and examples: Probability Approximations via the Poisson Clumping Heuristic David Aldous, 2010-12-01 If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense. |
Durrett Motor Company | Used Car, Truck, & SUV Dealer in …
Here at Durrett Motor Company in Houston, TX we are proud of our extensive selection of used cars, trucks, SUVs, & vans by great brands like Ford, Chevrolet, Nissan, Toyota, Jeep, …
Rick Durrett's Home Page - Duke University
I am a James B. Duke Emeritus Professor of Mathematics. My favorite research topics are (i) processes that take place on random graphs and (ii) stochastic spatial models that arise from …
Probability: Theory and Examples Rick Durrett Version 5 …
Contents 1 Measure Theory 1 1.1 Probability Spaces . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 10
Durrett Realty & Auction Co. - Greensburg Kentucky
Serving Central Kentucky for over 60 years. Part 3 of the Partial Cleston Picket Collection. Several Arrow heads, scrapers, and more! Durrett Realty Co. has been hired by Jim and …
Shop for Used Cars in Houston TX | Durrett Motor Company
Here at Durrett Motor Company in Houston, TX we are proud of our extensive selection of used cars, trucks, SUVs, & vans by great brands like Ford, Chevrolet, Nissan, Toyota, Jeep, …
About Durrett Motor Co. | Used Car Dealer Serving Houston
Learn more about Durrett Motor Co., a Houston dealer offering used cars and auto loans.
Rick Durrett - Wikipedia
Richard Timothy Durrett is an American mathematician known for his research and books on mathematical probability theory, stochastic processes and their application to mathematical …
Rick Durrett - Google Scholar
Lectures on Probability Theory: Ecole d'Eté de Probabilités de Saint-Flour … R Durrett, JP Gleeson, AL Lloyd, PJ Mucha, F Shi, D Sivakoff, JES Socolar, ...
Rick Durrett - Simons Institute for the Theory of Computing
Rick Durrett is a Professor in the Mathematics Department at Duke University, having previously held faculty positions at UCLA and at Cornell. His PhD is from Stanford in 1976.
Durrett Sheppard Steel Co. | A diversified metals processor and ...
superior processing equipment. with us today.
Durrett Motor Company | Used Car, Truck, & SUV Dealer in …
Here at Durrett Motor Company in Houston, TX we are proud of our extensive selection of used cars, trucks, SUVs, & vans by great brands like Ford, Chevrolet, Nissan, Toyota, Jeep, …
Rick Durrett's Home Page - Duke University
I am a James B. Duke Emeritus Professor of Mathematics. My favorite research topics are (i) processes that take place on random graphs and (ii) stochastic spatial models that arise from …
Probability: Theory and Examples Rick Durrett Version 5 …
Contents 1 Measure Theory 1 1.1 Probability Spaces . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 10
Durrett Realty & Auction Co. - Greensburg Kentucky
Serving Central Kentucky for over 60 years. Part 3 of the Partial Cleston Picket Collection. Several Arrow heads, scrapers, and more! Durrett Realty Co. has been hired by Jim and …
Shop for Used Cars in Houston TX | Durrett Motor Company
Here at Durrett Motor Company in Houston, TX we are proud of our extensive selection of used cars, trucks, SUVs, & vans by great brands like Ford, Chevrolet, Nissan, Toyota, Jeep, …
About Durrett Motor Co. | Used Car Dealer Serving Houston
Learn more about Durrett Motor Co., a Houston dealer offering used cars and auto loans.
Rick Durrett - Wikipedia
Richard Timothy Durrett is an American mathematician known for his research and books on mathematical probability theory, stochastic processes and their application to mathematical …
Rick Durrett - Google Scholar
Lectures on Probability Theory: Ecole d'Eté de Probabilités de Saint-Flour … R Durrett, JP Gleeson, AL Lloyd, PJ Mucha, F Shi, D Sivakoff, JES Socolar, ...
Rick Durrett - Simons Institute for the Theory of Computing
Rick Durrett is a Professor in the Mathematics Department at Duke University, having previously held faculty positions at UCLA and at Cornell. His PhD is from Stanford in 1976.
Durrett Sheppard Steel Co. | A diversified metals processor and ...
superior processing equipment. with us today.