Discrete Mathematics Topics

Advertisement



  discrete mathematics topics: Discrete Mathematics for Computer Science John Schlipf, Sue Whitesides, Gary Haggard, 2020-09-22 Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented.
  discrete mathematics topics: Introductory Discrete Mathematics V. K. Balakrishnan, 1996-01-01 This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition.
  discrete mathematics topics: Fundamentals of Discrete Math for Computer Science Tom Jenkyns, Ben Stephenson, 2012-10-16 This textbook provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions. Features: no university-level background in mathematics required; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.
  discrete mathematics topics: Discrete Mathematics of Neural Networks Martin Anthony, 2001-01-01 This concise, readable book provides a sampling of the very large, active, and expanding field of artificial neural network theory. It considers select areas of discrete mathematics linking combinatorics and the theory of the simplest types of artificial neural networks. Neural networks have emerged as a key technology in many fields of application, and an understanding of the theories concerning what such systems can and cannot do is essential. Some classical results are presented with accessible proofs, together with some more recent perspectives, such as those obtained by considering decision lists. In addition, probabilistic models of neural network learning are discussed. Graph theory, some partially ordered set theory, computational complexity, and discrete probability are among the mathematical topics involved. Pointers to further reading and an extensive bibliography make this book a good starting point for research in discrete mathematics and neural networks.
  discrete mathematics topics: Discrete Mathematics Rowan Garnier, John Taylor, 2020-10-29 In a comprehensive yet easy-to-follow manner, Discrete Mathematics for New Technology follows the progression from the basic mathematical concepts covered by the GCSE in the UK and by high-school algebra in the USA to the more sophisticated mathematical concepts examined in the latter stages of the book. The book punctuates the rigorous treatment of theory with frequent uses of pertinent examples and exercises, enabling readers to achieve a feel for the subject at hand. The exercise hints and solutions are provided at the end of the book. Topics covered include logic and the nature of mathematical proof, set theory, relations and functions, matrices and systems of linear equations, algebraic structures, Boolean algebras, and a thorough treatise on graph theory. Although aimed primarily at computer science students, the structured development of the mathematics enables this text to be used by undergraduate mathematicians, scientists, and others who require an understanding of discrete mathematics.
  discrete mathematics topics: Introduction to Discrete Mathematics via Logic and Proof Calvin Jongsma, 2019-11-08 This textbook introduces discrete mathematics by emphasizing the importance of reading and writing proofs. Because it begins by carefully establishing a familiarity with mathematical logic and proof, this approach suits not only a discrete mathematics course, but can also function as a transition to proof. Its unique, deductive perspective on mathematical logic provides students with the tools to more deeply understand mathematical methodology—an approach that the author has successfully classroom tested for decades. Chapters are helpfully organized so that, as they escalate in complexity, their underlying connections are easily identifiable. Mathematical logic and proofs are first introduced before moving onto more complex topics in discrete mathematics. Some of these topics include: Mathematical and structural induction Set theory Combinatorics Functions, relations, and ordered sets Boolean algebra and Boolean functions Graph theory Introduction to Discrete Mathematics via Logic and Proof will suit intermediate undergraduates majoring in mathematics, computer science, engineering, and related subjects with no formal prerequisites beyond a background in secondary mathematics.
  discrete mathematics topics: Discrete Mathematics and Graph Theory K. Erciyes, 2021-01-28 This textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.
  discrete mathematics topics: Problems and Exercises in Discrete Mathematics G.P. Gavrilov, A.A. Sapozhenko, 2013-03-09 Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.
  discrete mathematics topics: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--
  discrete mathematics topics: Discrete Mathematics Norman Biggs, 2002-12-19 Discrete mathematics is a compulsory subject for undergraduate computer scientists. This new edition includes new chapters on statements and proof, logical framework, natural numbers and the integers and updated exercises from the previous edition.
  discrete mathematics topics: Discrete Mathematics with Ducks Sarah-marie Belcastro, 2018-11-15 Discrete Mathematics with Ducks, Second Edition is a gentle introduction for students who find the proofs and abstractions of mathematics challenging. At the same time, it provides stimulating material that instructors can use for more advanced students. The first edition was widely well received, with its whimsical writing style and numerous exercises and materials that engaged students at all levels. The new, expanded edition continues to facilitate effective and active learning. It is designed to help students learn about discrete mathematics through problem-based activities. These are created to inspire students to understand mathematics by actively practicing and doing, which helps students better retain what they’ve learned. As such, each chapter contains a mixture of discovery-based activities, projects, expository text, in-class exercises, and homework problems. The author’s lively and friendly writing style is appealing to both instructors and students alike and encourages readers to learn. The book’s light-hearted approach to the subject is a guiding principle and helps students learn mathematical abstraction. Features: The book’s Try This! sections encourage students to construct components of discussed concepts, theorems, and proofs Provided sets of discovery problems and illustrative examples reinforce learning Bonus sections can be used by instructors as part of their regular curriculum, for projects, or for further study
  discrete mathematics topics: Topics in Finite and Discrete Mathematics Sheldon M. Ross, 2000-07-31 A text for engineering students with many examples not normally found in finite mathematics courses.
  discrete mathematics topics: Discrete Mathematics László Lovász, József Pelikán, K. Vesztergombi, 2003-01-27 Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
  discrete mathematics topics: A Spiral Workbook for Discrete Mathematics Harris Kwong, 2015-11-06 A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
  discrete mathematics topics: Discrete Mathematics for Computer Science Jon Pierre Fortney, 2020-12-23 Discrete Mathematics for Computer Science: An Example-Based Introduction is intended for a first- or second-year discrete mathematics course for computer science majors. It covers many important mathematical topics essential for future computer science majors, such as algorithms, number representations, logic, set theory, Boolean algebra, functions, combinatorics, algorithmic complexity, graphs, and trees. Features Designed to be especially useful for courses at the community-college level Ideal as a first- or second-year textbook for computer science majors, or as a general introduction to discrete mathematics Written to be accessible to those with a limited mathematics background, and to aid with the transition to abstract thinking Filled with over 200 worked examples, boxed for easy reference, and over 200 practice problems with answers Contains approximately 40 simple algorithms to aid students in becoming proficient with algorithm control structures and pseudocode Includes an appendix on basic circuit design which provides a real-world motivational example for computer science majors by drawing on multiple topics covered in the book to design a circuit that adds two eight-digit binary numbers Jon Pierre Fortney graduated from the University of Pennsylvania in 1996 with a BA in Mathematics and Actuarial Science and a BSE in Chemical Engineering. Prior to returning to graduate school, he worked as both an environmental engineer and as an actuarial analyst. He graduated from Arizona State University in 2008 with a PhD in Mathematics, specializing in Geometric Mechanics. Since 2012, he has worked at Zayed University in Dubai. This is his second mathematics textbook.
  discrete mathematics topics: Connections in Discrete Mathematics Steve Butler, Joshua Cooper, Glenn Hurlbert, 2018-06-14 Many of the best researchers and writers in discrete mathematics come together in a volume inspired by Ron Graham.
  discrete mathematics topics: Topics in Intersection Graph Theory Terry A. McKee, F. R. McMorris, 1999-01-01 Finally there is a book that presents real applications of graph theory in a unified format. This book is the only source for an extended, concentrated focus on the theory and techniques common to various types of intersection graphs. It is a concise treatment of the aspects of intersection graphs that interconnect many standard concepts and form the foundation of a surprising array of applications to biology, computing, psychology, matrices, and statistics.
  discrete mathematics topics: Discrete Mathematics Using a Computer Cordelia Hall, John O'Donnell, 2013-04-17 Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools such as proof checkers. These connections are emphasised throughout the book. Software tools (see Appendix A) enable the computer to serve as a calculator, but instead of just doing arithmetic and trigonometric functions, it will be used to calculate with sets, relations, functions, predicates and inferences. There are also special software tools, for example a proof checker for logical proofs using natural deduction.
  discrete mathematics topics: Journey into Discrete Mathematics Owen D. Byer, Deirdre L. Smeltzer, Kenneth L. Wantz, 2018-11-13 Journey into Discrete Mathematics is designed for use in a first course in mathematical abstraction for early-career undergraduate mathematics majors. The important ideas of discrete mathematics are included—logic, sets, proof writing, relations, counting, number theory, and graph theory—in a manner that promotes development of a mathematical mindset and prepares students for further study. While the treatment is designed to prepare the student reader for the mathematics major, the book remains attractive and appealing to students of computer science and other problem-solving disciplines. The exposition is exquisite and engaging and features detailed descriptions of the thought processes that one might follow to attack the problems of mathematics. The problems are appealing and vary widely in depth and difficulty. Careful design of the book helps the student reader learn to think like a mathematician through the exposition and the problems provided. Several of the core topics, including counting, number theory, and graph theory, are visited twice: once in an introductory manner and then again in a later chapter with more advanced concepts and with a deeper perspective. Owen D. Byer and Deirdre L. Smeltzer are both Professors of Mathematics at Eastern Mennonite University. Kenneth L. Wantz is Professor of Mathematics at Regent University. Collectively the authors have specialized expertise and research publications ranging widely over discrete mathematics and have over fifty semesters of combined experience in teaching this subject.
  discrete mathematics topics: Practical Discrete Mathematics Ryan T. White, Archana Tikayat Ray, 2021-02-22 A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.
  discrete mathematics topics: Discrete Mathematics Jean Gallier, 2011-01-25 This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
  discrete mathematics topics: A Beginner's Guide to Discrete Mathematics W.D. Wallis, 2011-10-07 Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.
  discrete mathematics topics: Discrete Mathematics with Applications Susanna S. Epp, 2018-12-17 Known for its accessible, precise approach, Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, introduces discrete mathematics with clarity and precision. Coverage emphasizes the major themes of discrete mathematics as well as the reasoning that underlies mathematical thought. Students learn to think abstractly as they study the ideas of logic and proof. While learning about logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that ideas of discrete mathematics underlie and are essential to today’s science and technology. The author’s emphasis on reasoning provides a foundation for computer science and upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
  discrete mathematics topics: Discrete Mathematics and Functional Programming Thomas VanDrunen, 2013 This book provides a distinct way to teach discrete mathematics. Since discrete mathematics is crucial for rigorous study in computer science, many texts include applications of mathematical topics to computer science or have selected topics of particular interest to computer science. This text fully integrates discrete mathematics with ......
  discrete mathematics topics: Discrete Mathematics Martin Aigner, The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints andsolutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition ... This book is a well-written introduction to discrete mathematics and is highly recommended to every student ofmathematics and computer science as well as to teachers of these topics. --Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of theMAA for expository writing, and his book Proofs from the BOOK with Gunter M. Ziegler has been an international success with translations into 12 languages.
  discrete mathematics topics: Discrete Mathematics with Proof Eric Gossett, 2009-06-22 A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.
  discrete mathematics topics: Discrete Mathematics and Applications Andrei M. Raigorodskii, Michael Th. Rassias, 2020-11-21 Advances in discrete mathematics are presented in this book with applications in theoretical mathematics and interdisciplinary research. Each chapter presents new methods and techniques by leading experts. Unifying interdisciplinary applications, problems, and approaches of discrete mathematics, this book connects topics in graph theory, combinatorics, number theory, cryptography, dynamical systems, finance, optimization, and game theory. Graduate students and researchers in optimization, mathematics, computer science, economics, and physics will find the wide range of interdisciplinary topics, methods, and applications covered in this book engaging and useful.
  discrete mathematics topics: Essential Discrete Mathematics for Computer Science Harry Lewis, Rachel Zax, 2019-03-19 Discrete mathematics is the basis of much of computer science, from algorithms and automata theory to combinatorics and graph theory. Essential Discrete Mathematics for Computer Science aims to teach mathematical reasoning as well as concepts and skills by stressing the art of proof. It is fully illustrated in color, and each chapter includes a concise summary as well as a set of exercises.
  discrete mathematics topics: Probabilistic Methods for Algorithmic Discrete Mathematics Michel Habib, 1998-08-19 The book gives an accessible account of modern pro- babilistic methods for analyzing combinatorial structures and algorithms. Each topic is approached in a didactic manner but the most recent developments are linked to the basic ma- terial. Extensive lists of references and a detailed index will make this a useful guide for graduate students and researchers. Special features included: - a simple treatment of Talagrand inequalities and their applications - an overview and many carefully worked out examples of the probabilistic analysis of combinatorial algorithms - a discussion of the exact simulation algorithm (in the context of Markov Chain Monte Carlo Methods) - a general method for finding asymptotically optimal or near optimal graph colouring, showing how the probabilistic method may be fine-tuned to explit the structure of the underlying graph - a succinct treatment of randomized algorithms and derandomization techniques
  discrete mathematics topics: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-06-05 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. The color images and text in this book have been converted to grayscale.
  discrete mathematics topics: Discrete Mathematics for Computing Peter Grossman, 2002-01 Written with a clear and informal style Discrete Mathematics for Computing is aimed at first year undergraduate computing students with very little mathematical background. It is a low-level introductory text which takes the topics at a gentle pace, covering all the essential material that forms the background for studies in computing and information systems. This edition includes new sections on proof methods and recurrences, and the examples have been updated throughout to reflect the changes in computing since the first edition.
  discrete mathematics topics: A First Course in Discrete Mathematics Ian Anderson, 2012-12-06 Drawing on many years'experience of teaching discrete mathem atics to students of all levels, Anderson introduces such as pects as enumeration, graph theory and configurations or arr angements. Starting with an introduction to counting and rel ated problems, he moves on to the basic ideas of graph theor y with particular emphasis on trees and planar graphs. He de scribes the inclusion-exclusion principle followed by partit ions of sets which in turn leads to a study of Stirling and Bell numbers. Then follows a treatment of Hamiltonian cycles, Eulerian circuits in graphs, and Latin squares as well as proof of Hall's theorem. He concludes with the constructions of schedules and a brief introduction to block designs. Each chapter is backed by a number of examples, with straightforw ard applications of ideas and more challenging problems.
  discrete mathematics topics: Discrete Mathematics and Game Theory Guillermo Owen, 1999-11-30 This book describes highly applicable mathematics without using calculus or limits in general. The study agrees with the opinion that the traditional calculus/analysis is not necessarily the only proper grounding for academics who wish to apply mathematics. The choice of topics is based on a desire to present those facets of mathematics which will be useful to economists and social/behavioral scientists. The volume is divided into seven chapters. Chapter I presents a brief review of the solution of systems of linear equations by the use of matrices. Chapter III introduces the theory of probability. The rest of the book deals with new developments in mathematics such as linear and dynamic programming, the theory of networks and the theory of games. These developments are generally recognized as the most important field in the `new mathematics' and they also have specific applications in the management sciences.
  discrete mathematics topics: Discrete Mathematics and Its Applications Kenneth H. Rosen, 1999 This text is designed for the sophomore/junior level introduction to discrete mathematics taken by students preparing for future coursework in areas such as math, computer science and engineering. Rosen has become a bestseller largely due to how effectively it addresses the main portion of the discrete market, which is typically characterized as the mid to upper level in rigor. The strength of Rosen's approach has been the effective balance of theory with relevant applications, as well as the overall comprehensive nature of the topic coverage.
  discrete mathematics topics: Discrete Mathematics John A. Dossey, 2005-11 The strong algorithmic emphasis of Discrete Mathematics is independent of a specific programming language, allowing students to concentrate on foundational problem-solving and analytical skills. Instructors get the topical breadth and organizational flexibility to tailor the course to the level and interests of their students. Algorithms are presented in English, eliminating the need for knowledge of a particular programming language. Computational and algorithmic exercise sets follow each chapter section and supplementary exercises and computer projects are included in the end-of-chapter material. This Fifth Edition features a new Chapter 3 covering matrix codes, error correcting codes, congruence, Euclidean algorithm and Diophantine equations, and the RSA algorithm.
  discrete mathematics topics: The Essence of Discrete Mathematics Neville Dean, 1997 Presenting a gentle introduction to all the basics of discrete mathematics, this book introduces sets, propositional logic, predicate logic, and mathematical models. It discusses relations, including homogeneous relations.
  discrete mathematics topics: Discrete Mathematics and Its Applications Kenneth H. Rosen, 2018-05 A precise, relevant, comprehensive approach to mathematical concepts...
  discrete mathematics topics: Discrete Mathematics James L. Hein, 2003 Winner at the 46th Annual New England Book Show (2003) in the College Covers & Jackets category This introduction to discrete mathematics prepares future computer scientists, engineers, and mathematicians for success by providing extensive and concentrated coverage of logic, functions, algorithmic analysis, and algebraic structures. Discrete Mathematics, Second Edition illustrates the relationships between key concepts through its thematic organization and provides a seamless transition between subjects. Distinct for the depth with which it covers logic, this text emphasizes problem solving and the application of theory as it carefully guides the reader from basic to more complex topics. Discrete Mathematics is an ideal resource for discovering the fundamentals of discrete math. Discrete Mathematics, Second Edition is designed for an introductory course in discrete mathematics for the prospective computer scientist, applied mathematician, or engineer who wants to learn how the ideas apply to computer sciences.The choice of topics-and the breadth of coverage-reflects the desire to provide students with the foundations needed to successfully complete courses at the upper division level in undergraduate computer science courses. This book differs in several ways from current books about discrete mathematics.It presents an elementary and unified introduction to a collection of topics that has not been available in a single source.A major feature of the book is the unification of the material so that it does not fragment into a collection of seemingly unrelated ideas.
  discrete mathematics topics: Logic and Discrete Mathematics Winfried Karl Grassmann, Jean-Paul Tremblay, 1996 This book covers all the traditional topics of discrete mathematics— logic, sets, relations, functions, and graphs— and reflects recent trends in computer science.Shows how to use discrete mathematics and logic for specifying new computer applications, and how to reason about programs in a systematic way. Describes Prolog, a programming language based on logic, and a section on Miranda, language bad on functions. Features numerous examples which relate the mathematical concepts to problems in computer science.
Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific applications. For NVIDIA: Right-click on the desktop and select …

Expert Solutions for Discrete GPU Idle Issues in NitroSense
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to Discrete GPU only. Select the Exit tab. Select Exit Saving …

What does discrete mass effect mean on a radiology report
the “discrete mass” then means arachnoid cyst in this case?I had a non contrast MRI a few months back and no compression was mentioned now the Cat mentioned that there is …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild coarsening of the liver echotexture means that the ultrasound has detected that …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Blunting and Fraying of the Labrum: Expert Answers
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Pyriform Sinus CT Scans: Expert Q&A - JustAnswer
1. New mild asymmetric fullness of the left piriform sinus without discrete mass. This is likely due to underdistention, but correlation with direct visualization is recommended. You can have …

I just got an ultrasound done to my liver, can this be reversed ...
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding ANA Titer 1:1280 and Its Patterns - Expert Q&A
Hello, this is Dr. David. I have read your question and am ready to help. the ANA speckled patter titer of 1:1280 means you are positive for antineuclear antibodies which means your body is …

Understanding ANA Titer 1:320 Speckled Pattern: Expert Answers
Customer: I had an ANA test and was positive at a titer of 1:320 speckled. I’m not sure what that means or what it implys.. my dr has been out and the nurse had no clue.

Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific applications. For NVIDIA: Right-click on the desktop and select …

Expert Solutions for Discrete GPU Idle Issues in NitroSense
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to Discrete GPU only. Select the Exit tab. Select Exit Saving …

What does discrete mass effect mean on a radiology report
the “discrete mass” then means arachnoid cyst in this case?I had a non contrast MRI a few months back and no compression was mentioned now the Cat mentioned that there is …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild coarsening of the liver echotexture means that the ultrasound has detected that …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Blunting and Fraying of the Labrum: Expert Answers
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Pyriform Sinus CT Scans: Expert Q&A - JustAnswer
1. New mild asymmetric fullness of the left piriform sinus without discrete mass. This is likely due to underdistention, but correlation with direct visualization is recommended. You can have …

I just got an ultrasound done to my liver, can this be reversed ...
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding ANA Titer 1:1280 and Its Patterns - Expert Q&A
Hello, this is Dr. David. I have read your question and am ready to help. the ANA speckled patter titer of 1:1280 means you are positive for antineuclear antibodies which means your body is …

Understanding ANA Titer 1:320 Speckled Pattern: Expert Answers
Customer: I had an ANA test and was positive at a titer of 1:320 speckled. I’m not sure what that means or what it implys.. my dr has been out and the nurse had no clue.