Discrete Mathematical Structures

Advertisement



  discrete mathematical structures: Discrete Mathematical Structures for Computer Science Bernard Kolman, Robert C. Busby, 1987 This text has been designed as a complete introduction to discrete mathematics, primarily for computer science majors in either a one or two semester course. The topics addressed are of genuine use in computer science, and are presented in a logically coherent fashion. The material has been organized and interrelated to minimize the mass of definitions and the abstraction of some of the theory. For example, relations and directed graphs are treated as two aspects of the same mathematical idea. Whenever possible each new idea uses previously encountered material, and then developed in such a way that it simplifies the more complex ideas that follow.
  discrete mathematical structures: Discrete Mathematical Structures D. S. Malik, M. K. Sen, 2004 Teaches students the mathematical foundations of computer science, including logic, Boolean algebra, basic graph theory, finite state machines, grammars and algorithms, and helps them understand mathematical reasoning for reading, comprehension and construction of mathematical arguments.
  discrete mathematical structures: Discrete Mathematical Structures with Applications to Computer Science Jean-Paul Tremblay, R. Manohar, 1987
  discrete mathematical structures: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--
  discrete mathematical structures: Discrete Mathematical Structures B. V. Senthil Kumar, Hemen Dutta, 2019-07-08 This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
  discrete mathematical structures: Discrete Mathematics for Computer Science John Schlipf, Sue Whitesides, Gary Haggard, 2020-09-22 Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented.
  discrete mathematical structures: Discrete Mathematical Structures Bernard Kolman, Robert C. Busby, Sharon Cutler Ross, 1996 This is the only discrete math text that has a thread holding the various topics together. One of the shortest books on the market. New to this edition: stronger coverage of logic, graphs, and trees. Also includes special student projects.
  discrete mathematical structures: Discrete Mathematics - Proof Techniques And Mathematical Structures Robert Clark Penner, 1999-10-19 This book offers an introduction to mathematical proofs and to the fundamentals of modern mathematics. No real prerequisites are needed other than a suitable level of mathematical maturity. The text is divided into two parts, the first of which constitutes the core of a one-semester course covering proofs, predicate calculus, set theory, elementary number theory, relations, and functions, and the second of which applies this material to a more advanced study of selected topics in pure mathematics, applied mathematics, and computer science, specifically cardinality, combinatorics, finite-state automata, and graphs. In both parts, deeper and more interesting material is treated in optional sections, and the text has been kept flexible by allowing many different possible courses or emphases based upon different paths through the volume.
  discrete mathematical structures: Discrete Mathematical Structures G. Shanker Rao, 2007-12-31 About the Book: This text can be used by the students of mathematics and computer science as an introduction to the fundamentals of discrete mathematics. The book is designed in accordance with the syllabi of B.E., B. Tech., MCA and M.Sc. (Computer Science) prescribed in most of the universities of India. Each chapter is supplemented with a number of worked example as well as a number of problems to be solved by the students. This would help in a better understanding of the subject. Contents: Mathematical Logic Set Theory Relations Functions and Recurrence Relations Boolean Algebra Logic Gates Elementary Combinatorics Graph Theory Algebraic Structures Finite State Machines
  discrete mathematical structures: Discrete Structures and Their Interactions Jason I. Brown, 2016-04-19 Discover the Connections between Different Structures and FieldsDiscrete Structures and Their Interactions highlights the connections among various discrete structures, including graphs, directed graphs, hypergraphs, partial orders, finite topologies, and simplicial complexes. It also explores their relationships to classical areas of mathematics,
  discrete mathematical structures: Discrete Mathematical Structures for Computer Science Ronald E. Prather, 1976
  discrete mathematical structures: Mathematics of Discrete Structures for Computer Science Gordon J. Pace, 2012-07-09 Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.
  discrete mathematical structures: FUNDAMENTALS OF DISCRETE MATHEMATICAL STRUCTURES, THIRD EDITION CHOWDHARY, K. R., 2015-01-02 This updated text, now in its Third Edition, continues to provide the basic concepts of discrete mathematics and its applications at an appropriate level of rigour. The text teaches mathematical logic, discusses how to work with discrete structures, analyzes combinatorial approach to problem-solving and develops an ability to create and understand mathematical models and algorithms essentials for writing computer programs. Every concept introduced in the text is first explained from the point of view of mathematics, followed by its relation to Computer Science. In addition, it offers excellent coverage of graph theory, mathematical reasoning, foundational material on set theory, relations and their computer representation, supported by a number of worked-out examples and exercises to reinforce the students’ skill. Primarily intended for undergraduate students of Computer Science and Engineering, and Information Technology, this text will also be useful for undergraduate and postgraduate students of Computer Applications. New to this Edition Incorporates many new sections and subsections such as recurrence relations with constant coefficients, linear recurrence relations with and without constant coefficients, rules for counting and shorting, Peano axioms, graph connecting, graph scanning algorithm, lexicographic shorting, chains, antichains and order-isomorphism, complemented lattices, isomorphic order sets, cyclic groups, automorphism groups, Abelian groups, group homomorphism, subgroups, permutation groups, cosets, and quotient subgroups. Includes many new worked-out examples, definitions, theorems, exercises, and GATE level MCQs with answers.
  discrete mathematical structures: Discrete Mathematics Norman Biggs, 2002-12-19 Discrete mathematics is a compulsory subject for undergraduate computer scientists. This new edition includes new chapters on statements and proof, logical framework, natural numbers and the integers and updated exercises from the previous edition.
  discrete mathematical structures: Discrete Mathematics Rowan Garnier, John Taylor, 2009-11-09 Taking an approach to the subject that is suitable for a broad readership, Discrete Mathematics: Proofs, Structures, and Applications, Third Edition provides a rigorous yet accessible exposition of discrete mathematics, including the core mathematical foundation of computer science. The approach is comprehensive yet maintains an easy-to-follow prog
  discrete mathematical structures: Introductory Discrete Mathematics V. K. Balakrishnan, 1996-01-01 This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition.
  discrete mathematical structures: A Course In Discrete Mathematical Structures Lekh Rej Vermani, Shalini Vermani, 2012-01-13 This book provides a broad introduction to some of the most fascinating and beautiful areas of discrete mathematical structures. It starts with a chapter on sets and goes on to provide examples in logic, applications of the principle of inclusion and exclusion and finally the pigeonhole principal. Computational techniques including the principle of mathematical introduction are provided, as well as a study on elementary properties of graphs, trees and lattices. Some basic results on groups, rings, fields and vector spaces are also given, the treatment of which is intentionally simple since such results are fundamental as a foundation for students of discrete mathematics. In addition, some results on solutions of systems of linear equations are discussed./a
  discrete mathematical structures: Discrete Structures, Logic, and Computability James L. Hein, 2001 Discrete Structure, Logic, and Computability introduces the beginning computer science student to some of the fundamental ideas and techniques used by computer scientists today, focusing on discrete structures, logic, and computability. The emphasis is on the computational aspects, so that the reader can see how the concepts are actually used. Because of logic's fundamental importance to computer science, the topic is examined extensively in three phases that cover informal logic, the technique of inductive proof; and formal logic and its applications to computer science.
  discrete mathematical structures: Discrete Mathematics Rowan Garnier, John Taylor, 2020-10-29 In a comprehensive yet easy-to-follow manner, Discrete Mathematics for New Technology follows the progression from the basic mathematical concepts covered by the GCSE in the UK and by high-school algebra in the USA to the more sophisticated mathematical concepts examined in the latter stages of the book. The book punctuates the rigorous treatment of theory with frequent uses of pertinent examples and exercises, enabling readers to achieve a feel for the subject at hand. The exercise hints and solutions are provided at the end of the book. Topics covered include logic and the nature of mathematical proof, set theory, relations and functions, matrices and systems of linear equations, algebraic structures, Boolean algebras, and a thorough treatise on graph theory. Although aimed primarily at computer science students, the structured development of the mathematics enables this text to be used by undergraduate mathematicians, scientists, and others who require an understanding of discrete mathematics.
  discrete mathematical structures: Discrete Structures Harriet Fell, Javed Aslam, 2016-12-19 Discrete Structures introduces readers to the mathematical structures and methods that form the foundation of computer science and features multiple techniques that readers will turn to regularly throughout their careers in computer and information sciences. Over the course of five modules, students learn specific skills including binary and modular arithmetic, set notation, methods of counting, evaluating sums, and solving recurrences. They study the basics of probability, proof by induction, growth of functions, and analysis techniques. The book also discusses general problem-solving techniques that are widely applicable to real problems. Each module includes motivation applications, technique, theory, and further opportunities for application. Informed by extensive experience teaching in computer science programs, Discrete Structures has been developed specifically for first-year students in those programs. The material is also suitable for courses in computer engineering, as well as those for students who are transferring from other disciplines and just beginning their computer science or engineering education.
  discrete mathematical structures: Discrete Mathematical Algorithm, and Data Structures Sanjib Sinha, 2021-03-26 Readers will learn discrete mathematical abstracts as well as its implementation in algorithm and data structures shown in various programming languages, such as C, C++, PHP, Java, C#, Python and Dart. This book combines two major components of Mathematics and Computer Science under one roof. Without the core conceptions and tools derived from discrete mathematics, one cannot understand the abstract or the general idea involving algorithm and data structures in Computer Science. The objects of data structures are basically objects of discrete mathematics. This book tries to bridge the gap between two major components of Mathematics and Computer Science.In any computer science course, studying discrete mathematics is essential, although they are taught separately, except in a few cases. Yet, a comprehensive book, combining these two major components, is hard to find out; not only that, it is almost impossible to understand one without the help of other.Hope, this book will fill the gap. Readers will learn discrete mathematical abstracts as well as its implementation in algorithm and data structures shown in various programming language, such as C++, Java, C#, Python and Dart.1. Introduction to the Discourse Is Discrete Mathematics enough to study Computer Science? A short Introduction to Discrete Mathematics What is Discrete Mathematics What is the relationship between Discrete Mathematics and Computer Science Introducing necessary conceptions 2. Introduction to Programming Language and Boolean Algebra Logic, Mathematics, and Programming Language Introduction to Boolean Algebra 3. De Morgan's Laws on Boolean Algebra, Logical Expression, and Algorithm Logical Expression Short Circuit EvaluationSyntax, Semantics and Conditional ExecutionWhy we need Control Constructs Discrete Mathematical Notations and Algorithm 4. Data Structures in different Programming languages Mean, Median and Mode Array, the First Step to Data Structure Let us understand some Array features Set Theory, Probability and Array Skewed Mean, Maximized Median Complex Array Algorithm 5. Data Structures: Abstractions and Implementation How objects work with each other More Algorithm and Time Complexity Introducing Data Structures How Calculus and Linear Algebra are Related to this Discourse 6. Data Structures in Detail Frequently Asked Questions about Data Structures Abstract Data Type (ADT) Linear Data Structures Modeling of a Structure ArrayList to overcome limitations of Array ArrayList or LinkedList, which is faster? Collection Framework in programming languages Stack and Queue in Java Deque, a high-performance Abstract Data Type 7. Algorithm, Data Structure, Collection Framework and Standard Template Library (STL) Introducing Algorithm Library Different types of Algorithms Binary Tree and Data Structure Collection Framework in Java Discrete Mathematical Abstractions and Implementation through Java Collection Comparator, Comparable and Iterator Standard Template Library in C++ 8. Time Complexity Order of n, or O(n) Big O Notation 9. Set, Symmetric Difference and Propositional Logic Why Set is important in Data Structures How Symmetric Difference and Propositional Logic combine 10. Combinatorics and Counting, Permutation and Combinations Permutation and CombinationWhat Next
  discrete mathematical structures: Discrete Mathematical Structures for Computer Science Bernard Kolman, Robert C. Busby, 1984
  discrete mathematical structures: Discrete Mathematical Structures Bernard Kolman, Robert C. Busby, Sharon Cutler Ross, 2004 Combining a careful selection of topics with coverage of theirgenuineapplications in computer science, this book, more than any other in this field, is clearly and concisely written, presenting the basic ideas of discrete mathematical structures in a manner that is understandable.Limiting its scope and depth of topics to those that readers can actually utilize, this book covers first the fundamentals, then follows with logic, counting, relations and digraphs, functions, order relations and structures, trees, graph theory, semigroups and groups, languages and finite-state machines, and groups and coding.With its comprehensive appendices and index, this book can be an excellent reference work for mathematicians and those in the field of computer science.
  discrete mathematical structures: Discrete Mathematical Structures Kolman, 1996
  discrete mathematical structures: Discrete Mathematics and Structures Satinder Bal Gupta, 2014 The sixth edition is an outcome of author's continuous discussions with his colleagues and students. It helps readers to develop mathematical maturity and understand the basic concepts of discrete mathematics and structures. Extensive in its coverage, each new concept is introduced and then reinforced by solved examples. Questions from various examinations have been incorporated to enable students to understand the latest trends in paper-setting. --
  discrete mathematical structures: Discrete Mathematics with Applications Thomas Koshy, 2004-01-19 This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects* Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises* Features interesting anecdotes and biographies of 60 mathematicians and computer scientists* Instructor's Manual available for adopters* Student Solutions Manual available separately for purchase (ISBN: 0124211828)
  discrete mathematical structures: Discrete Mathematical Structures (Classic Version) Bernard Kolman, Robert Busby, Sharon Ross, 2017-03-20 This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Discrete Mathematical Structures, 6th Edition, offers a clear and concise presentation of the fundamental concepts of discrete mathematics. Ideal for a one-semester introductory course, this text contains more genuine computer science applications than any other text in the field. This book is written at an appropriate level for a wide variety of majors and non-majors, and assumes a college algebra course as a prerequisite.
  discrete mathematical structures: Practical Discrete Mathematics Ryan T. White, Archana Tikayat Ray, 2021-02-22 A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.
  discrete mathematical structures: Discrete Mathematics with Proof Eric Gossett, 2009-06-22 A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.
  discrete mathematical structures: Introduction to Discrete Mathematics via Logic and Proof Calvin Jongsma, 2019-11-08 This textbook introduces discrete mathematics by emphasizing the importance of reading and writing proofs. Because it begins by carefully establishing a familiarity with mathematical logic and proof, this approach suits not only a discrete mathematics course, but can also function as a transition to proof. Its unique, deductive perspective on mathematical logic provides students with the tools to more deeply understand mathematical methodology—an approach that the author has successfully classroom tested for decades. Chapters are helpfully organized so that, as they escalate in complexity, their underlying connections are easily identifiable. Mathematical logic and proofs are first introduced before moving onto more complex topics in discrete mathematics. Some of these topics include: Mathematical and structural induction Set theory Combinatorics Functions, relations, and ordered sets Boolean algebra and Boolean functions Graph theory Introduction to Discrete Mathematics via Logic and Proof will suit intermediate undergraduates majoring in mathematics, computer science, engineering, and related subjects with no formal prerequisites beyond a background in secondary mathematics.
  discrete mathematical structures: Mathematical Structures for Computer Science Judith L. Gersting, 2007 This edition offers a pedagogically rich and intuitive introduction to discrete mathematics structures. It meets the needs of computer science majors by being both comprehensive and accessible.
  discrete mathematical structures: Mathematical Structures for Computer Science Judith Gersting, 2014-01-01 Mathematical Structures for Computer Science, written by Judith L. Gersting, is a vital textbook for computer science undergraduate students, which helps to introduce readers to the maths behind computing. This textbook has long been much loved and acclaimed for its clear, concise presentation of essential concepts and its exceptional range of applications relevant to computer science majors. This new edition made the textbook the first discrete mathematics textbook to be revised in order to meet the proposed new ACM/IEEE standards of the course. It features new material, including new sections on probability, coding theory, matrices and order of magnitude. It also includes roughly 30% more exercises and examples, further aiding students’ learning of this complex subject underpinning the field of computing.
  discrete mathematical structures: Discrete Mathematics László Lovász, József Pelikán, K. Vesztergombi, 2003-01-27 Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
  discrete mathematical structures: Discrete Mathematics with Applications, Metric Edition Susanna S. Epp, 2019
  discrete mathematical structures: Discrete Mathematical Structures B. V. Senthil Kumar, Hemen Dutta, 2019-07-08 This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
  discrete mathematical structures: Discrete Mathematical Structures G Shanker Rao, 2002 This Text Can Be Used By The Students Of Mathematics Or Computer Science As An Introduction To The Fundamentals Of Discrete Mathematics. The Book Is Designed In Accordance With The Syllabi Of Be, B. Tech, Bca, Mca, And M.Sc. (Computer Science) Prescribed In Most Of The Universities.This Book Offers The Following Topics:Mathematical Logic, Sets, Relations, Recurrence Relations, Functions, Combinations, Boolean Algebra, Logic Gates, Graph Theory, Algebraic Structures, And Finite State Machines. Each Chapter Is Supplemented With A Number Of Worked Examples As Well As A Number Of Problems To Be Solved By The Students. This Would Help In A Better Understanding Of The Subject.
  discrete mathematical structures: Discrete Mathematical Structures Mario Benedicty, Frank R. Sledge, 1985
  discrete mathematical structures: Essential Discrete Mathematics for Computer Science Harry Lewis, Rachel Zax, 2019-03-19 Discrete mathematics is the basis of much of computer science, from algorithms and automata theory to combinatorics and graph theory. Essential Discrete Mathematics for Computer Science aims to teach mathematical reasoning as well as concepts and skills by stressing the art of proof. It is fully illustrated in color, and each chapter includes a concise summary as well as a set of exercises.
Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific applications. For NVIDIA: Right-click on the desktop and select …

Expert Solutions for Discrete GPU Idle Issues in NitroSense
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to Discrete GPU only. Select the Exit tab. Select Exit Saving …

What does discrete mass effect mean on a radiology report
the “discrete mass” then means arachnoid cyst in this case?I had a non contrast MRI a few months back and no compression was mentioned now the Cat mentioned that there is …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild coarsening of the liver echotexture means that the ultrasound has detected that …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Blunting and Fraying of the Labrum: Expert Answers
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Pyriform Sinus CT Scans: Expert Q&A - JustAnswer
1. New mild asymmetric fullness of the left piriform sinus without discrete mass. This is likely due to underdistention, but correlation with direct visualization is recommended. You can have …

I just got an ultrasound done to my liver, can this be reversed ...
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding ANA Titer 1:1280 and Its Patterns - Expert Q&A
Hello, this is Dr. David. I have read your question and am ready to help. the ANA speckled patter titer of 1:1280 means you are positive for antineuclear antibodies which means your body is …

Understanding ANA Titer 1:320 Speckled Pattern: Expert Answers
Customer: I had an ANA test and was positive at a titer of 1:320 speckled. I’m not sure what that means or what it implys.. my dr has been out and the nurse had no clue.

Why is My Discrete GPU Idle? Expert Answers and Solutions
NVIDIA Control Panel/AMD Radeon Settings: Depending on your GPU, you can manually set the discrete GPU for specific applications. For NVIDIA: Right-click on the desktop and select …

Expert Solutions for Discrete GPU Idle Issues in NitroSense
Use the arrow keys to select the Advanced tab. Use the arrow keys to select the Display mode and change it from Optimus to Discrete GPU only. Select the Exit tab. Select Exit Saving …

What does discrete mass effect mean on a radiology report
the “discrete mass” then means arachnoid cyst in this case?I had a non contrast MRI a few months back and no compression was mentioned now the Cat mentioned that there is …

What does mild coarsening of the liver echo texture mean?
Hi, Welcome to JA and thanks for this question. I'm sorry to hear about your ultrasound report. Actually mild coarsening of the liver echotexture means that the ultrasound has detected that …

What are some reasons a neck lymph node would not have
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Blunting and Fraying of the Labrum: Expert Answers
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding Pyriform Sinus CT Scans: Expert Q&A - JustAnswer
1. New mild asymmetric fullness of the left piriform sinus without discrete mass. This is likely due to underdistention, but correlation with direct visualization is recommended. You can have …

I just got an ultrasound done to my liver, can this be reversed ...
Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts.

Understanding ANA Titer 1:1280 and Its Patterns - Expert Q&A
Hello, this is Dr. David. I have read your question and am ready to help. the ANA speckled patter titer of 1:1280 means you are positive for antineuclear antibodies which means your body is …

Understanding ANA Titer 1:320 Speckled Pattern: Expert Answers
Customer: I had an ANA test and was positive at a titer of 1:320 speckled. I’m not sure what that means or what it implys.. my dr has been out and the nurse had no clue.