Decision Tree In Sas Enterprise Guide

Advertisement



  decision tree in sas enterprise guide: Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner Olivia Parr-Rud, 2014-10-01 This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. Today’s businesses increasingly use data to drive decisions that keep them competitive. Especially with the influx of big data, the importance of data analysis to improve every dimension of business cannot be overstated. Data analysts are therefore in demand; however, many hires and prospective hires, although talented with respect to business and statistics, lack the know-how to perform business analytics with advanced statistical software. Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner is a beginner’s guide with clear, illustrated, step-by-step instructions that will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. This book is part of the SAS Press program.
  decision tree in sas enterprise guide: Decision Trees for Business Intelligence and Data Mining Barry De Ville, 2006 This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications.
  decision tree in sas enterprise guide: End-To-End Data Science with SAS James Gearheart, 2020-06-30 Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning models in any industry. The book covers concepts including understanding the business need, creating a modeling data set, linear regression, parametric classification models, and non-parametric classification models. Real-world business examples and example code are used to demonstrate each process step-by-step. Although a significant amount of background information and supporting mathematics are presented, the book is not structured as a textbook, but rather it is a user's guide for the application of data science and machine learning in a business environment. Readers will learn how to think like a data scientist, wrangle messy data, choose a model, and evaluate the model's effectiveness. New data scientists or professionals who want more experience with SAS will find this book to be an invaluable reference. Take your data science career to the next level by mastering SAS programming for machine learning models.
  decision tree in sas enterprise guide: Classification and Regression Trees Leo Breiman, 2017-10-19 The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
  decision tree in sas enterprise guide: The Little SAS Enterprise Guide Book Susan J. Slaughter, Lora D. Delwiche, 2017-03-22 Learning to use SAS Enterprise Guide has never been easier! Whether you are using SAS Enterprise Guide for the first time, or are looking to expand your skills, this is the book for you! With The Little SAS Enterprise Guide Book, award-winning authors Susan Slaughter and Lora Delwiche help you quickly become productive in the SAS Enterprise Guide point-and-click environment. A series of carefully designed tutorials help you master the basics of the tasks you'll want to do most frequently. The reference section of the book expands on the tutorial topics, covering specific features in more depth. This edition has been completely rewritten, and updated with new features in SAS Enterprise Guide.
  decision tree in sas enterprise guide: Decision Trees With SAS Enterprise Miner Scientific Books, 2016-01-02 This book shows you how to build decision tree models to predict a categorical target and how to build regression tree models to predict a continuous target. Some examples are presented. One example shows how to build a decision tree model to predict response to direct mail. In this example, the target variable is binary, taking on the values response and no response. Other example shows how to build a regression tree model to forecast a continuous (but interval-scaled) target often used in the auto insurance industry, namely loss frequency . Loss frequency can also be modeled as a categorical target variable if it takes on only a few values but in this example it is treated as a continuous target. Successive chapters present examples that clarify the application of the tree models. The examples are solved step by step with SAS Enterprise Miner in order to make easier the understanding of the methodologies used.
  decision tree in sas enterprise guide: Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition Randall S. Collica, 2017-03-23 Résumé : A working guide that uses real-world data, this step-by-step resource will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. --
  decision tree in sas enterprise guide: Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner Olivia Parr-Rud, 2014-10 This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. This beginnner's guide with clear, illustrated, step-by-step instructions will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. --
  decision tree in sas enterprise guide: Simulating Data with SAS Rick Wicklin, 2013-04-22 Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.
  decision tree in sas enterprise guide: Data Mining Using SAS Enterprise Miner SAS Institute, 2003
  decision tree in sas enterprise guide: Decision Trees for Analytics Using SAS Enterprise Miner Barry De Ville, Padraic Neville, 2019-07-03 Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book.
  decision tree in sas enterprise guide: Tree Models of Similarity and Association James E. Corter, 1996-04-02 Clustering and tree models are widely used in the social and biological sciences to analyze similarity relations. Tree Models of Similarity and Association describes how matrices of similarities or associations among entities can be modeled using trees, and to explain some of the issues that arise in performing such analyses and correctly interpreting the results. James E. Corter clearly distinguishes ultrametric trees (fit by the techniques widely known as hierarchical clustering) from additive trees and discusses how specific aspects of each type of tree can be interpreted through the use of applications as examples. He concludes with a discussion of when tree models might be preferable to spatial geometric models, such as those fit by multidimensional scaling (MDS) or principal components analysis (PCA).
  decision tree in sas enterprise guide: Data Preparation for Analytics Using SAS Gerhard Svolba, 2006-11-27 Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more!
  decision tree in sas enterprise guide: Data Mining and Statistics for Decision Making Stéphane Tufféry, 2011-03-23 Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
  decision tree in sas enterprise guide: SAS and R Ken Kleinman, Nicholas J. Horton, 2014-07-17 An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.
  decision tree in sas enterprise guide: SAS For Dummies Stephen McDaniel, Chris Hemedinger, 2010-03-16 The fun and easy way to learn to use this leading business intelligence tool Written by an author team who is directly involved with SAS, this easy-to-follow guide is fully updated for the latest release of SAS and covers just what you need to put this popular software to work in your business. SAS allows any business or enterprise to improve data delivery, analysis, reporting, movement across a company, data mining, forecasting, statistical analysis, and more. SAS For Dummies, 2nd Edition gives you the necessary background on what SAS can do for you and explains how to use the Enterprise Guide. SAS provides statistical and data analysis tools to help you deal with all kinds of data: operational, financial, performance, and more Places special emphasis on Enterprise Guide and other analytical tools, covering all commonly used features Covers all commonly used features and shows you the practical applications you can put to work in your business Explores how to get various types of data into the software and how to work with databases Covers producing reports and Web reporting tools, analytics, macros, and working with your data In the easy-to-follow, no-nonsense For Dummies format, SAS For Dummies gives you the knowledge and the confidence to get SAS working for your organization. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
  decision tree in sas enterprise guide: Deep Learning for Numerical Applications with SAS (Hardcover Edition) Henry Bequet, 2019-08-16 Foreword by Oliver Schabenberger, PhD Executive Vice President, Chief Operating Officer and Chief Technology Officer SAS Dive into deep learning! Machine learning and deep learning are ubiquitous in our homes and workplaces-from machine translation to image recognition and predictive analytics to autonomous driving. Deep learning holds the promise of improving many everyday tasks in a variety of disciplines. Much deep learning literature explains the mechanics of deep learning with the goal of implementing cognitive applications fueled by Big Data. This book is different. Written by an expert in high-performance analytics, Deep Learning for Numerical Applications with SAS introduces a new field: Deep Learning for Numerical Applications (DL4NA). Contrary to deep learning, the primary goal of DL4NA is not to learn from data but to dramatically improve the performance of numerical applications by training deep neural networks. Deep Learning for Numerical Applications with SAS presents deep learning concepts in SAS along with step-by-step techniques that allow you to easily reproduce the examples on your high-performance analytics systems. It also discusses the latest hardware innovations that can power your SAS programs: from many-core CPUs to GPUs to FPGAs to ASICs. This book assumes the reader has no prior knowledge of high-performance computing, machine learning, or deep learning. It is intended for SAS developers who want to develop and run the fastest analytics. In addition to discovering the latest trends in hybrid architectures with GPUs and FPGAS, readers will learn how to Use deep learning in SAS Speed up their analytics using deep learning Easily write highly parallel programs using the many task computing paradigms
  decision tree in sas enterprise guide: Text Mining and Analysis Dr. Goutam Chakraborty, Murali Pagolu, Satish Garla, 2014-11-22 Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.
  decision tree in sas enterprise guide: SAS Tracking Handbook Barry Davies, 2014-08-05 Tracking originated with man’s need for food; he needed to understand what he was following and what the rewards would be if he was successful. Little has changed over time about the terms of tracking. We still track game for sport and food, but we have also found other uses for tracking. Border police patrol to stop illegal immigrants from entering their country; the military tracks down wanted terrorists or enemy forces. Tracking has become a military skill. In the SAS Tracking Handbook, former SAS soldier and British Empire Medal (BEM) award–winner Barry Davies teaches not only how to survive in the outdoors with the skills of tracking, but how to use these skills from a military standpoint. Included in this book are many helpful tips on topics including: The types of dogs used for tracking. Traps for catching wild animals. Modern military tracking. Using your surroundings to your advantage. And much more. The success or failure of the modern tracker is dependent on the personal skills of the individual tracker. Training is vital in learning tracking skills, and continuous exercise the best way to interpret signs. These skills are rarely found, but they remain hidden deep within all of us. So whether you’re already a skilled tracker or a novice in the field, the SAS Tracking Handbook will be your guide to mastering this old and respected art.
  decision tree in sas enterprise guide: Machine Learning with scikit-learn Quick Start Guide Kevin Jolly, 2018-10-30 Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering. Key FeaturesBuild your first machine learning model using scikit-learnTrain supervised and unsupervised models using popular techniques such as classification, regression and clusteringUnderstand how scikit-learn can be applied to different types of machine learning problemsBook Description Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models. Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions. What you will learnLearn how to work with all scikit-learn's machine learning algorithmsInstall and set up scikit-learn to build your first machine learning modelEmploy Unsupervised Machine Learning Algorithms to cluster unlabelled data into groupsPerform classification and regression machine learningUse an effective pipeline to build a machine learning project from scratchWho this book is for This book is for aspiring machine learning developers who want to get started with scikit-learn. Intermediate knowledge of Python programming and some fundamental knowledge of linear algebra and probability will help.
  decision tree in sas enterprise guide: Practical Business Analytics Using SAS Shailendra Kadre, Venkat Reddy Konasani, 2015-02-07 Practical Business Analytics Using SAS: A Hands-on Guide shows SAS users and businesspeople how to analyze data effectively in real-life business scenarios. The book begins with an introduction to analytics, analytical tools, and SAS programming. The authors—both SAS, statistics, analytics, and big data experts—first show how SAS is used in business, and then how to get started programming in SAS by importing data and learning how to manipulate it. Besides illustrating SAS basic functions, you will see how each function can be used to get the information you need to improve business performance. Each chapter offers hands-on exercises drawn from real business situations. The book then provides an overview of statistics, as well as instruction on exploring data, preparing it for analysis, and testing hypotheses. You will learn how to use SAS to perform analytics and model using both basic and advanced techniques like multiple regression, logistic regression, and time series analysis, among other topics. The book concludes with a chapter on analyzing big data. Illustrations from banking and other industries make the principles and methods come to life. Readers will find just enough theory to understand the practical examples and case studies, which cover all industries. Written for a corporate IT and programming audience that wants to upgrade skills or enter the analytics field, this book includes: More than 200 examples and exercises, including code and datasets for practice. Relevant examples for all industries. Case studies that show how to use SAS analytics to identify opportunities, solve complicated problems, and chart a course. Practical Business Analytics Using SAS: A Hands-on Guide gives you the tools you need to gain insight into the data at your fingertips, predict business conditions for better planning, and make excellent decisions. Whether you are in retail, finance, healthcare, manufacturing, government, or any other industry, this book will help your organization increase revenue, drive down costs, improve marketing, and satisfy customers better than ever before.
  decision tree in sas enterprise guide: Machine Learning and Data Science Blueprints for Finance Hariom Tatsat, Sahil Puri, Brad Lookabaugh, 2020-10-01 Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
  decision tree in sas enterprise guide: Statistical Data Mining Using SAS Applications George Fernandez, 2010-06-18 Statistical Data Mining Using SAS Applications, Second Edition describes statistical data mining concepts and demonstrates the features of user-friendly data mining SAS tools. Integrating the statistical and graphical analysis tools available in SAS systems, the book provides complete statistical data mining solutions without writing SAS program co
  decision tree in sas enterprise guide: Pharmaceutical Statistics Using SAS Alex Dmitrienko, Christy Chuang-Stein, Ralph B. D'Agostino, 2007 Introduces a range of data analysis problems encountered in drug development and illustrates them using case studies from actual pre-clinical experiments and clinical studies. Includes a discussion of methodological issues, practical advice from subject matter experts, and review of relevant regulatory guidelines.
  decision tree in sas enterprise guide: Fraud Analytics with SAS , 2019-06-21 SAS software provides many different techniques to monitor in real time and investigate your data, and several groundbreaking papers have been written to demonstrate how to use these techniques. Topics covered illustrate the power of SAS solutions that are available as tools for fraud analytics, highlighting a variety of domains, including money laundering, financial crime, and terrorism. Also available free as a PDF from: sas.com/books.
  decision tree in sas enterprise guide: SAS 9.1.3 Intelligence Platform SAS Institute, 2007 Explains how to administer the SAS Web applications that run in the middle tier of the SAS Intelligence Platform. The Web applications include the SAS Information Delivery Portal, SAS Web Report Studio, and SAS Web OLAP Viewer for Java.This guide describes the middle-tier environment, provides sample deployment scenarios, and explains how to configure the Web applications for optimal performance. The guide contains instructions for common administrative tasks, such as configuring trusted Web authentication, as well as instructions for administering the individual Web applications. For example, the guide explains how to add content to the SAS Information Delivery Portal and how to control access to that content. This title is also available online.
  decision tree in sas enterprise guide: The Practitioner's Guide to Graph Data Denise Gosnell, Matthias Broecheler, 2020-03-20 Graph data closes the gap between the way humans and computers view the world. While computers rely on static rows and columns of data, people navigate and reason about life through relationships. This practical guide demonstrates how graph data brings these two approaches together. By working with concepts from graph theory, database schema, distributed systems, and data analysis, you’ll arrive at a unique intersection known as graph thinking. Authors Denise Koessler Gosnell and Matthias Broecheler show data engineers, data scientists, and data analysts how to solve complex problems with graph databases. You’ll explore templates for building with graph technology, along with examples that demonstrate how teams think about graph data within an application. Build an example application architecture with relational and graph technologies Use graph technology to build a Customer 360 application, the most popular graph data pattern today Dive into hierarchical data and troubleshoot a new paradigm that comes from working with graph data Find paths in graph data and learn why your trust in different paths motivates and informs your preferences Use collaborative filtering to design a Netflix-inspired recommendation system
  decision tree in sas enterprise guide: Handbook of Statistical Analysis and Data Mining Applications Robert Nisbet, John Elder, Gary D. Miner, 2009-05-14 The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers (both academic and industrial) through all stages of data analysis, model building and implementation. The Handbook helps one discern the technical and business problem, understand the strengths and weaknesses of modern data mining algorithms, and employ the right statistical methods for practical application. Use this book to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques, and discusses their application to real problems, in ways accessible and beneficial to practitioners across industries - from science and engineering, to medicine, academia and commerce. This handbook brings together, in a single resource, all the information a beginner will need to understand the tools and issues in data mining to build successful data mining solutions. - Written By Practitioners for Practitioners - Non-technical explanations build understanding without jargon and equations - Tutorials in numerous fields of study provide step-by-step instruction on how to use supplied tools to build models - Practical advice from successful real-world implementations - Includes extensive case studies, examples, MS PowerPoint slides and datasets - CD-DVD with valuable fully-working 90-day software included: Complete Data Miner - QC-Miner - Text Miner bound with book
  decision tree in sas enterprise guide: Data Mining and Exploration Chong Ho Alex Yu, 2022-10-27 This book introduces both conceptual and procedural aspects of cutting-edge data science methods, such as dynamic data visualization, artificial neural networks, ensemble methods, and text mining. There are at least two unique elements that can set the book apart from its rivals. First, most students in social sciences, engineering, and business took at least one class in introductory statistics before learning data science. However, usually these courses do not discuss the similarities and differences between traditional statistics and modern data science; as a result learners are disoriented by this seemingly drastic paradigm shift. In reaction, some traditionalists reject data science altogether while some beginning data analysts employ data mining tools as a “black box”, without a comprehensive view of the foundational differences between traditional and modern methods (e.g., dichotomous thinking vs. pattern recognition, confirmation vs. exploration, single method vs. triangulation, single sample vs. cross-validation etc.). This book delineates the transition between classical methods and data science (e.g. from p value to Log Worth, from resampling to ensemble methods, from content analysis to text mining etc.). Second, this book aims to widen the learner's horizon by covering a plethora of software tools. When a technician has a hammer, every problem seems to be a nail. By the same token, many textbooks focus on a single software package only, and consequently the learner tends to fit the problem with the tool, but not the other way around. To rectify the situation, a competent analyst should be equipped with a tool set, rather than a single tool. For example, when the analyst works with crucial data in a highly regulated industry, such as pharmaceutical and banking, commercial software modules (e.g., SAS) are indispensable. For a mid-size and small company, open-source packages such as Python would come in handy. If the research goal is to create an executive summary quickly, the logical choice is rapid model comparison. If the analyst would like to explore the data by asking what-if questions, then dynamic graphing in JMP Pro is a better option. This book uses concrete examples to explain the pros and cons of various software applications.
  decision tree in sas enterprise guide: Intelligent and Fuzzy Techniques: Smart and Innovative Solutions Cengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A. Cagri Tolga, 2020-07-10 This book gathers the most recent developments in fuzzy & intelligence systems and real complex systems presented at INFUS 2020, held in Istanbul on July 21–23, 2020. The INFUS conferences are a well-established international research forum to advance the foundations and applications of intelligent and fuzzy systems, computational intelligence, and soft computing, highlighting studies on fuzzy & intelligence systems and real complex systems at universities and international research institutions. Covering a range of topics, including the theory and applications of fuzzy set extensions such as intuitionistic fuzzy sets, hesitant fuzzy sets, spherical fuzzy sets, and fuzzy decision-making; machine learning; risk assessment; heuristics; and clustering, the book is a valuable resource for academics, M.Sc. and Ph.D. students, as well as managers and engineers in industry and the service sectors.
  decision tree in sas enterprise guide: Sas/Graph Robert Allison, 2019-08-28 Robert Allison's SAS/GRAPH: Beyond the Basics collects examples that demonstrate a variety of techniques you can use to create custom graphs using SAS/GRAPH software. SAS/GRAPH is known for its flexibility and power, but few people know how to use it to its full potential. Written for the SAS programmer with experience using Base SAS to work with data, the book includes examples that can be used in a variety of industry sectors. SAS/GRAPH: Beyond the Basics will help you create the exact graph you want.
  decision tree in sas enterprise guide: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Aurélien Géron, 2019-09-05 Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
  decision tree in sas enterprise guide: Ensemble Methods in Data Mining Giovanni Seni, John Elder, 2022-06-01 Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners. Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity
  decision tree in sas enterprise guide: Customer and Business Analytics Daniel S. Putler, Robert E. Krider, 2012-05-07 Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex
  decision tree in sas enterprise guide: SAS Text Analytics for Business Applications Teresa Jade, Biljana Belamaric-Wilsey, Michael Wallis, 2019-03-29 Extract actionable insights from text and unstructured data. Information extraction is the task of automatically extracting structured information from unstructured or semi-structured text. SAS Text Analytics for Business Applications: Concept Rules for Information Extraction Models focuses on this key element of natural language processing (NLP) and provides real-world guidance on the effective application of text analytics. Using scenarios and data based on business cases across many different domains and industries, the book includes many helpful tips and best practices from SAS text analytics experts to ensure fast, valuable insight from your textual data. Written for a broad audience of beginning, intermediate, and advanced users of SAS text analytics products, including SAS Visual Text Analytics, SAS Contextual Analysis, and SAS Enterprise Content Categorization, this book provides a solid technical reference. You will learn the SAS information extraction toolkit, broaden your knowledge of rule-based methods, and answer new business questions. As your practical experience grows, this book will serve as a reference to deepen your expertise.
  decision tree in sas enterprise guide: Data Mining with Rattle and R Graham Williams, 2011-02-25 Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.
  decision tree in sas enterprise guide: Soft Computing in Data Science Michael W. Berry, Bee Wah Yap, Azlinah Mohamed, Mario Köppen, 2019-09-23 This book constitutes the refereed proceedings of the 5th International Conference on Soft Computing in Data Science, SCDS 2019, held in Iizuka, Japan, in August 2019. The 30 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers are organized in topical sections on ​information and customer analytics; visual data science; machine and deep learning; big data analytics; computational and artificial intelligence; social network and media analytics.
  decision tree in sas enterprise guide: SAS Data Integration Studio 4.9: User's Guide Sas Institute, 2014-08-01 Describes the main tasks that you can perform in SAS Data Integration Studio, including: data access; data integration; metadata management; data cleansing and enrichment; extract, transform, and load (ETL); extract, load, and transform (ELT); and service-oriented architecture (SOA) and message queue integration.
  decision tree in sas enterprise guide: Advanced Data Mining Techniques David L. Olson, Dursun Delen, 2008-01-01 This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.
DECISION Definition & Meaning - Merriam-Webster
The meaning of DECISION is the act or process of deciding. How to use decision in a sentence.

DECISION | English meaning - Cambridge Dictionary
DECISION definition: 1. a choice that you make about something after thinking about several possibilities: 2. the…. Learn more.

DECISION Definition & Meaning | Dictionary.com
Decision definition: the act or process of deciding; deciding; determination, as of a question or doubt, by making a judgment.. See examples of DECISION used in a sentence.

decision noun - Definition, pictures, pronunciation and usage …
Definition of decision noun in Oxford Advanced American Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.

Decision - definition of decision by The Free Dictionary
1. the act or process of deciding. 2. the act of making up one's mind: a difficult decision. 3. something that is decided; resolution. 4. a judgment, as one pronounced by a court. 5. the …

What does Decision mean? - Definitions.net
What does Decision mean? This dictionary definitions page includes all the possible meanings, example usage and translations of the word Decision. A choice or judgement. Firmness of …

decision - Wiktionary, the free dictionary
Jun 7, 2025 · (choice or judgment): Most often, to decide something is to make a decision; however, other possibilities exist as well. Many verbs used with destination or conclusion, such …

SUPREME COURT OF THE UNITED STATES
4 days ago · judgment” rule articulated by the Eighth Circuit in its 1982 decision in Monahan, in which the Eighth Circuit reasoned that to prove dis-crimination under the Rehabilitation Act in …

Decision-making - Wikipedia
In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several …

Decision - Definition, Meaning & Synonyms - Vocabulary.com
To make a decision is to make up your mind about something. To act with decision is to proceed with determination, which might be a natural character trait.

DECISION Definition & Meaning - Merriam-Webster
The meaning of DECISION is the act or process of deciding. How to use decision in a sentence.

DECISION | English meaning - Cambridge Dictionary
DECISION definition: 1. a choice that you make about something after thinking about several possibilities: 2. the…. Learn more.

DECISION Definition & Meaning | Dictionary.com
Decision definition: the act or process of deciding; deciding; determination, as of a question or doubt, by making a judgment.. See examples of DECISION used in a sentence.

decision noun - Definition, pictures, pronunciation and usage …
Definition of decision noun in Oxford Advanced American Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.

Decision - definition of decision by The Free Dictionary
1. the act or process of deciding. 2. the act of making up one's mind: a difficult decision. 3. something that is decided; resolution. 4. a judgment, as one pronounced by a court. 5. the …

What does Decision mean? - Definitions.net
What does Decision mean? This dictionary definitions page includes all the possible meanings, example usage and translations of the word Decision. A choice or judgement. Firmness of …

decision - Wiktionary, the free dictionary
Jun 7, 2025 · (choice or judgment): Most often, to decide something is to make a decision; however, other possibilities exist as well. Many verbs used with destination or conclusion, such …

SUPREME COURT OF THE UNITED STATES
4 days ago · judgment” rule articulated by the Eighth Circuit in its 1982 decision in Monahan, in which the Eighth Circuit reasoned that to prove dis-crimination under the Rehabilitation Act in …

Decision-making - Wikipedia
In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several …

Decision - Definition, Meaning & Synonyms - Vocabulary.com
To make a decision is to make up your mind about something. To act with decision is to proceed with determination, which might be a natural character trait.