Chemical Reaction Engineering Solved Problems

Advertisement



  chemical reaction engineering solved problems: The Engineering of Chemical Reactions Lanny D. Schmidt, 2009 The Engineering of Chemical Reactions focuses explicitly on developing the skills necessary to design a chemical reactor for any application, including chemical production, materials processing, and environmental modeling.
  chemical reaction engineering solved problems: Chemical Reaction Engineering Octave Levenspiel, 1998-09-01 Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. It's goal is the successful design and operation of chemical reactors. This text emphasizes qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. Simple ideas are treated first, and are then extended to the more complex.
  chemical reaction engineering solved problems: Elements of Chemical Reaction Engineering H. Scott Fogler, 1999 The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and organized, it integrates text, visuals, and computer simulations to help readers solve even the most challenging problems through reasoning, rather than by memorizing equations.--BOOK JACKET.
  chemical reaction engineering solved problems: Advanced Reactor Modeling with MATLAB Riccardo Tesser, Vincenzo Russo, 2020-12-07 Offers the reader a modern approach to reactor description and modelling. Using the widely applied numerical language MATLAB, it provides the reader with categorized groups of general code for a wide variety of chemical reactors. Being designed as a tool for researchers and professionals, the code can easily be extended and adapted by the reader to their own specific problems.
  chemical reaction engineering solved problems: Reaction Engineering, Catalyst Preparation, and Kinetics Jorge Marchetti, 2021-11-22 This book serves as an introduction to the subject, giving readers the tools to solve real-world chemical reaction engineering problems. It features a section of fully solved examples as well as end of chapter problems. It includes coverage of catalyst characterization and its impact on kinetics and reactor modeling. Each chapter presents simple ideas and concepts which build towards more complex and realistic cases and situations. Introduces an in-depth kinetics analysis Features well developed sections on the major topics of catalysts, kinetics, reactor design, and modeling Includes a chapter that showcases a fully worked out example detailing a typical problem that is faced when performing laboratory work Offers end of chapter problems and a solutions manual for adopting professors Aimed at advanced chemical engineering undergraduates and graduate students taking chemical reaction engineering courses as well as chemical engineering professionals, this textbook provides the knowledge to tackle real problems within the industry.
  chemical reaction engineering solved problems: Essentials of Chemical Reaction Engineering H. Scott Fogler, 2011 Accompanying DVD-ROM contains many realistic, interactive simulations.
  chemical reaction engineering solved problems: Chemical Engineering Solved Problems N. S. Nandagopal, 2007 Successfully prepare for the chemical PE exam with Chemical Engineering Solved Problems. 160 problems, based on 26 different situations, are written in the same multiple-choice format as the exam and offer varying levels of difficulty.
  chemical reaction engineering solved problems: The Chemical Reactor from Laboratory to Industrial Plant Elio Santacesaria, Riccardo Tesser, 2018-11-04 This graduate textbook, written by a former lecturer, addresses industrial chemical reaction topics, focusing on the commercial-scale exploitation of chemical reactions. It introduces students to the concepts behind the successful design and operation of chemical reactors, with an emphasis on qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. It starts by discussing simple ideas before moving on to more advanced concepts with the support of numerous case studies. Many simple and advanced exercises are present in each chapter and the detailed MATLAB code for their solution is available to the reader as supplementary material on Springer website. It is written for MSc chemical engineering students and novice researchers working in industrial laboratories.
  chemical reaction engineering solved problems: Essentials of Chemical Reaction Engineering H. Scott Fogler, 2017-10-26 Today’s Definitive, Undergraduate-Level Introduction to Chemical Reaction Engineering Problem-Solving For 30 years, H. Scott Fogler’s Elements of Chemical Reaction Engineering has been the #1 selling text for courses in chemical reaction engineering worldwide. Now, in Essentials of Chemical Reaction Engineering, Second Edition, Fogler has distilled this classic into a modern, introductory-level guide specifically for undergraduates. This is the ideal resource for today’s students: learners who demand instantaneous access to information and want to enjoy learning as they deepen their critical thinking and creative problem-solving skills. Fogler successfully integrates text, visuals, and computer simulations, and links theory to practice through many relevant examples. This updated second edition covers mole balances, conversion and reactor sizing, rate laws and stoichiometry, isothermal reactor design, rate data collection/analysis, multiple reactions, reaction mechanisms, pathways, bioreactions and bioreactors, catalysis, catalytic reactors, nonisothermal reactor designs, and more. Its multiple improvements include a new discussion of activation energy, molecular simulation, and stochastic modeling, and a significantly revamped chapter on heat effects in chemical reactors. To promote the transfer of key skills to real-life settings, Fogler presents three styles of problems: Straightforward problems that reinforce the principles of chemical reaction engineering Living Example Problems (LEPs) that allow students to rapidly explore the issues and look for optimal solutions Open-ended problems that encourage students to use inquiry-based learning to practice creative problem-solving skills About the Web Site (umich.edu/~elements/5e/index.html) The companion Web site offers extensive enrichment opportunities and additional content, including Complete PowerPoint slides for lecture notes for chemical reaction engineering classes Links to additional software, including Polymath, MATLAB, Wolfram Mathematica, AspenTech, and COMSOL Multiphysics Interactive learning resources linked to each chapter, including Learning Objectives, Summary Notes, Web Modules, Interactive Computer Games, Computer Simulations and Experiments, Solved Problems, FAQs, and links to LearnChemE Living Example Problems that provide more than 75 interactive simulations, allowing students to explore the examples and ask “what-if ” questions Professional Reference Shelf, containing advanced content on reactors, weighted least squares, experimental planning, laboratory reactors, pharmacokinetics, wire gauze reactors, trickle bed reactors, fluidized bed reactors, CVD boat reactors, detailed explanations of key derivations, and more Problem-solving strategies and insights on creative and critical thinking Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.
  chemical reaction engineering solved problems: Elements Of Chemical Reaction Engineering 4Th Ed. H. Scott Fogler, 2006 'Elements of Chemical Reaction Engineering', fourth edition, presents the fundamentals of chemical reaction engineering in a clear and concise manner.
  chemical reaction engineering solved problems: Fundamentals of Chemical Reaction Engineering Mark E. Davis, Robert J. Davis, 2013-05-27 Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. Each chapter contains numerous worked-out problems and real-world vignettes involving commercial applications, a feature widely praised by reviewers and teachers. 2003 edition.
  chemical reaction engineering solved problems: Chemical Reaction Engineering Tapio Salmi, Johan Wärnå, José Rafael Hernández Carucci, César A. de Araújo Filho, 2020-03-23 This book illustrates how models of chemical reactors are built up in a systematic manner, step by step. The authors also outline how the numerical solution algorithms for reactor models are selected, as well as how computer codes are written for numerical performance, with a focus on MATLAB and Fortran. Examples solved in MATLAB and simulations performed in Fortran are included for demonstration purposes.
  chemical reaction engineering solved problems: Elements of Chemical Reaction Engineering H. Scott Fogler, Bryan R. Goldsmith, Eranda Nikolla, Nirala Singh, 2025-03-19 The Essential Textbook for Mastering Chemical Reaction Engineering--Now Fully Updated with Expanded Coverage of Electrochemical Reactors H. Scott Fogler's Elements of Chemical Reaction Engineering, now in its seventh edition, continues to set the standard as the leading textbook in chemical reaction engineering. This edition, coauthored by Bryan R. Goldsmith, Eranda Nikolla, and Nirala Singh, still offers Fogler's engaging and active learning experience, with updated content and expanded coverage of electrochemical reactors. Reflecting current theories and practices, and with a continuing emphasis on safety and sustainability, this edition includes expanded sections on molecular simulation methods, analysis of experimental reactor data, and catalytic reactions. Leveraging the power of Wolfram, Python, POLYMATH, and MATLAB, students can explore the intricacies of reactions and reactors through realistic simulation experiments. This hands-on approach allows students to clearly understand the practical applications of theoretical concepts. This book prepares undergraduate students to apply chemical reaction kinetics and physics to the design of chemical reactors. Advanced chapters cover graduate-level topics, including diffusion and reaction models, residence time distribution, and tools to model non-ideal reactors. The seventh edition includes An expanded section on molecular simulation methods and potential energy surfaces Updated examples of experimental reactor data and its analysis Detailed discussion of definitions in catalysis and examples of catalytic reactions Additional examples and an expanded section on surface reaction mechanisms and microkinetic modeling A new chapter on electrochemical reactors with example problems, reflecting the growing importance of this field in renewable energy and industrial processes About the Companion Web Site (umich.edu/~elements/7e/index.html) Comprehensive PowerPoint slides for lecture notes for chemical reaction engineering classes Links to additional software, including POLYMATHTM, MATLABTM, Python, Wolfram MathematicaTM, AspenTechTM, and COMSOLTM Interactive learning resources linked to each chapter, including Learning Objectives, Summary Notes, Web Modules, Interactive Computer Games, Solved Problems, FAQs, additional homework problems, and links to LearnChemE and other resources Living Example Problems provide interactive simulations, allowing students to explore the examples and ask what-if questions Professional Reference Shelf, which includes advanced content on reactors, weighted least squares, experimental planning, pharmacokinetics, detailed explanations of key derivations, and more Redesigned Web site to increase accessibility Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  chemical reaction engineering solved problems: Chemical Reaction Engineering Martin Schmal, 2014-04-04 Chemical Reaction Engineering: Essentials, Exercises and Examples presents the essentials of kinetics, reactor design and chemical reaction engineering for undergraduate students. Concise and didactic in its approach, it features over 70 resolved examples and many exercises.The work is organized in two parts: in the first part kinetics is presented
  chemical reaction engineering solved problems: Chemical Reaction Engineering and Reactor Technology, Second Edition Tapio O. Salmi, Jyri-Pekka Mikkola, Johan P. Wärnå, 2019-07-11 The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Thoroughly revised and updated, this much-anticipated Second Edition addresses the rapid academic and industrial development of chemical reaction engineering. Offering a systematic development of the chemical reaction engineering concept, this volume explores: essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors homogeneous and heterogeneous reactors reactor optimization aspects residence time distributions and non-ideal flow conditions in industrial reactors solutions of algebraic and ordinary differential equation systems gas- and liquid-phase diffusion coefficients and gas-film coefficients correlations for gas-liquid systems solubilities of gases in liquids guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.
  chemical reaction engineering solved problems: Kinetics of Chemical Processes Michel Boudart, 2014-05-16 Kinetics of Chemical Processes details the concepts associated with the kinetic study of the chemical processes. The book is comprised of 10 chapters that present information relevant to applied research. The text first covers the elementary chemical kinetics of elementary steps, and then proceeds to discussing catalysis. The next chapter tackles simplified kinetics of sequences at the steady state. Chapter 5 deals with coupled sequences in reaction networks, while Chapter 6 talks about autocatalysis and inhibition. The seventh chapter describes the irreducible transport phenomena in chemical kinetics. The next two chapters discuss the correlations in homogenous kinetics and heterogeneous catalysis, respectively. The last chapter covers the analysis of reaction networks. The book will be of great use to students, researchers, and practitioners of scientific disciplines that deal with chemical reaction, particularly chemistry and chemical engineering.
  chemical reaction engineering solved problems: The Chemical Reactor Omnibook Octave Levenspiel, 1993
  chemical reaction engineering solved problems: Chemical Reaction Engineering and Reactor Technology Tapio O. Salmi, Jyri-Pekka Mikkola, Johan P. Warna, 2010-08-30 The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reacto
  chemical reaction engineering solved problems: ,
  chemical reaction engineering solved problems: Chemical Reaction Engineering and Reactor Technology, Second Edition Tapio O. Salmi, Jyri-Pekka Mikkola, Johan P. Wärnå, 2019-07-11 The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Thoroughly revised and updated, this much-anticipated Second Edition addresses the rapid academic and industrial development of chemical reaction engineering. Offering a systematic development of the chemical reaction engineering concept, this volume explores: essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors homogeneous and heterogeneous reactors reactor optimization aspects residence time distributions and non-ideal flow conditions in industrial reactors solutions of algebraic and ordinary differential equation systems gas- and liquid-phase diffusion coefficients and gas-film coefficients correlations for gas-liquid systems solubilities of gases in liquids guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.
  chemical reaction engineering solved problems: Introduction to Chemical Reactor Analysis R.E. Hayes, J.P. Mmbaga, 2012-10-05 Introduction to Chemical Reactor Analysis, Second Edition introduces the basic concepts of chemical reactor analysis and design, an important foundation for understanding chemical reactors, which play a central role in most industrial chemical plants. The scope of the second edition has been significantly enhanced and the content reorganized for im
  chemical reaction engineering solved problems: Elements of Chemical Reaction Engineering EduGorilla Prep Experts, 2024-06-09 EduGorilla Publication is a trusted name in the education sector, committed to empowering learners with high-quality study materials and resources. Specializing in competitive exams and academic support, EduGorilla provides comprehensive and well-structured content tailored to meet the needs of students across various streams and levels.
  chemical reaction engineering solved problems: Chemical Engineering Primer with Computer Applications Hussein K. Abdel-Aal, 2016-10-14 Taking a highly pragmatic approach to presenting the principles and applications of chemical engineering, this companion text for students and working professionals offers an easily accessible guide to solving problems using computers. The primer covers the core concepts of chemical engineering, from conservation laws all the way up to chemical kinetics, without heavy stress on theory and is designed to accompany traditional larger core texts. The book presents the basic principles and techniques of chemical engineering processes and helps readers identify typical problems and how to solve them. Focus is on the use of systematic algorithms that employ numerical methods to solve different chemical engineering problems by describing and transforming the information. Problems are assigned for each chapter, ranging from simple to difficult, allowing readers to gradually build their skills and tackle a broad range of problems. MATLAB and Excel® are used to solve many examples and the more than 70 real examples throughout the book include computer or hand solutions, or in many cases both. The book also includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to the book’s problems on the publisher’s website. Introduces the reader to chemical engineering computation without the distractions caused by the contents found in many texts. Provides the principles underlying all of the major processes a chemical engineer may encounter as well as offers insight into their analysis, which is essential for design calculations. Shows how to solve chemical engineering problems using computers that require numerical methods using standard algorithms, such as MATLAB® and Excel®. Contains selective solved examples of many problems within the chemical process industry to demonstrate how to solve them using the techniques presented in the text. Includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to problems on the publisher’s website. Offers non-chemical engineers who are expected to work with chemical engineers on projects, scale-ups and process evaluations a solid understanding of basic concepts of chemical engineering analysis, design, and calculations.
  chemical reaction engineering solved problems: Tenth International Symposium on Chemical Reaction Engineering J. R. Bourne, W. Regenass, W. Richarz, 2017-05-04 ISCRE 10 Tenth International Symposium on Chemical Reaction Engineering documents the proceedings of the symposium which brought together experts from all over the world to discuss developments in CRE. Efforts were made to cover high added value substances and to encourage papers from industry. Some success was achieved, but there remain significant gaps between Chemists and Chemical Engineers when considering high added value products as well as between researchers and practitioners of CRE. The volume begins with plenary papers covering topics such as challenges in reactor modeling; bioreactor engineering; the design of reaction systems for specialty organic chemicals. This is followed by papers presented during the eight technical sessions. Technical session A focused on the modeling and control of chemical reactions. Technical session B was devoted to studies on biotechnology. Technical session C covered mixing while Technical session D dealt with special reactor systems and chemicals. The papers in Technical session E examined reactions for emission control and recycling. Technical session F covered the safety aspects of CRE. Technical session G focused on the experiments with multiphase reactions while Technical session H dealt with catalytic reactors.
  chemical reaction engineering solved problems: Introduction to Chemical Engineering Kinetics and Reactor Design Charles G. Hill, Thatcher W. Root, 2014-04-24 The Second Edition features new problems that engage readers in contemporary reactor design Highly praised by instructors, students, and chemical engineers, Introduction to Chemical Engineering Kinetics & Reactor Design has been extensively revised and updated in this Second Edition. The text continues to offer a solid background in chemical reaction kinetics as well as in material and energy balances, preparing readers with the foundation necessary for success in the design of chemical reactors. Moreover, it reflects not only the basic engineering science, but also the mathematical tools used by today’s engineers to solve problems associated with the design of chemical reactors. Introduction to Chemical Engineering Kinetics & Reactor Design enables readers to progressively build their knowledge and skills by applying the laws of conservation of mass and energy to increasingly more difficult challenges in reactor design. The first one-third of the text emphasizes general principles of chemical reaction kinetics, setting the stage for the subsequent treatment of reactors intended to carry out homogeneous reactions, heterogeneous catalytic reactions, and biochemical transformations. Topics include: Thermodynamics of chemical reactions Determination of reaction rate expressions Elements of heterogeneous catalysis Basic concepts in reactor design and ideal reactor models Temperature and energy effects in chemical reactors Basic and applied aspects of biochemical transformations and bioreactors About 70% of the problems in this Second Edition are new. These problems, frequently based on articles culled from the research literature, help readers develop a solid understanding of the material. Many of these new problems also offer readers opportunities to use current software applications such as Mathcad and MATLAB®. By enabling readers to progressively build and apply their knowledge, the Second Edition of Introduction to Chemical Engineering Kinetics & Reactor Design remains a premier text for students in chemical engineering and a valuable resource for practicing engineers.
  chemical reaction engineering solved problems: Advances in Chemical Engineering , 1992-02-03 Advances in Chemical Engineering
  chemical reaction engineering solved problems: Introduction to Chemical Engineering Computing Bruce A. Finlayson, 2014-03-05 Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author’s firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book’s accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.
  chemical reaction engineering solved problems: Chemical Reactions and Chemical Reactors George W. Roberts, 2008-03-14 Focused on the undergraduate audience, Chemical Reaction Engineering provides students with complete coverage of the fundamentals, including in-depth coverage of chemical kinetics. By introducing heterogeneous catalysis early in the book, the text gives students the knowledge they need to solve real chemistry and industrial problems. An emphasis on problem-solving and numerical techniques ensures students learn and practice the skills they will need later on, whether for industry or graduate work.
  chemical reaction engineering solved problems: Chemical Reaction Engineering L.K. Doraiswamy, Deniz Uner, 2013-07-15 Filling a longstanding gap for graduate courses in the field, Chemical Reaction Engineering: Beyond the Fundamentals covers basic concepts as well as complexities of chemical reaction engineering, including novel techniques for process intensification. The book is divided into three parts: Fundamentals Revisited, Building on Fundamentals, and Beyond the Fundamentals. Part I: Fundamentals Revisited reviews the salient features of an undergraduate course, introducing concepts essential to reactor design, such as mixing, unsteady-state operations, multiple steady states, and complex reactions. Part II: Building on Fundamentals is devoted to skill building, particularly in the area of catalysis and catalytic reactions. It covers chemical thermodynamics, emphasizing the thermodynamics of adsorption and complex reactions; the fundamentals of chemical kinetics, with special emphasis on microkinetic analysis; and heat and mass transfer effects in catalysis, including transport between phases, transfer across interfaces, and effects of external heat and mass transfer. It also contains a chapter that provides readers with tools for making accurate kinetic measurements and analyzing the data obtained. Part III: Beyond the Fundamentals presents material not commonly covered in textbooks, addressing aspects of reactors involving more than one phase. It discusses solid catalyzed fluid-phase reactions in fixed-bed and fluidized-bed reactors, gas–solid noncatalytic reactions, reactions involving at least one liquid phase (gas–liquid and liquid–liquid), and multiphase reactions. This section also describes membrane-assisted reactor engineering, combo reactors, homogeneous catalysis, and phase-transfer catalysis. The final chapter provides a perspective on future trends in reaction engineering.
  chemical reaction engineering solved problems: Introduction to Chemical Reaction Engineering and Kinetics Ronald W. Missen, Charles A. Mims, Bradley A. Saville, 1999 Solving problems in chemical reaction engineering and kinetics is now easier than ever! As students read through this text, they'll find a comprehensive, introductory treatment of reactors for single-phase and multiphase systems that exposes them to a broad range of reactors and key design features. They'll gain valuable insight on reaction kinetics in relation to chemical reactor design. They will also utilize a special software package that helps them quickly solve systems of algebraic and differential equations, and perform parameter estimation, which gives them more time for analysis. Key Features Thorough coverage is provided on the relevant principles of kinetics in order to develop better designs of chemical reactors. E-Z Solve software, on CD-ROM, is included with the text. By utilizing this software, students can have more time to focus on the development of design models and on the interpretation of calculated results. The software also facilitates exploration and discussion of realistic, industrial design problems. More than 500 worked examples and end-of-chapter problems are included to help students learn how to apply the theory to solve design problems. A web site, www.wiley.com/college/missen, provides additional resources including sample files, demonstrations, and a description of the E-Z Solve software.
  chemical reaction engineering solved problems: Green Chemical Engineering S. Suresh, S. Sundaramoorthy, 2014-12-18 This book explores a balance between energy and material, applied to chemical reactors with catalysis, to achieve a given purpose. It includes the fundamentals of chemical reaction engineering and explains reactor design fundamentals. The book spans the full range-from the fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies-to their equivalent large-scale industrial production processes. It also includes significant developments, with recent research case studies and literature.
  chemical reaction engineering solved problems: Information Sources in Engineering Roderick A. Macleod, Jim Corlett, 2012-04-17 The current, thoroughly revised and updated edition of this approved title, evaluates information sources in the field of technology. It provides the reader not only with information of primary and secondary sources, but also analyses the details of information from all the important technical fields, including environmental technology, biotechnology, aviation and defence, nanotechnology, industrial design, material science, security and health care in the workplace, as well as aspects of the fields of chemistry, electro technology and mechanical engineering. The sources of information presented also contain publications available in printed and electronic form, such as books, journals, electronic magazines, technical reports, dissertations, scientific reports, articles from conferences, meetings and symposiums, patents and patent information, technical standards, products, electronic full text services, abstract and indexing services, bibliographies, reviews, internet sources, reference works and publications of professional associations. Information Sources in Engineering is aimed at librarians and information scientists in technical fields as well as non-professional information specialists, who have to provide information about technical issues. Furthermore, this title is of great value to students and people with technical professions.
  chemical reaction engineering solved problems: Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB Michael B. Cutlip, Mordechai Shacham, 2008 Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB , Second Edition, is a valuable resource and companion that integrates the use of numerical problem solving in the three most widely used software packages: POLYMATH, Microsoft Excel, and MATLAB. Recently developed POLYMATH capabilities allow the automatic creation of Excel spreadsheets and the generation of MATLAB code for problem solutions. Students and professional engineers will appreciate the ease with which problems can be entered into POLYMATH and then solved independently in all three software packages, while taking full advantage of the unique capabilities within each package. The book includes more than 170 problems requiring numerical solutions. This greatly expanded and revised second edition includes new chapters on getting started with and using Excel and MATLAB. It also places special emphasis on biochemical engineering with a major chapter on the subject and with the integration of biochemical problems throughout the book. General Topics and Subject Areas, Organized by Chapter Introduction to Problem Solving with Mathematical Software Packages Basic Principles and Calculations Regression and Correlation of Data Introduction to Problem Solving with Excel Introduction to Problem Solving with MATLAB Advanced Problem-Solving Techniques Thermodynamics Fluid Mechanics Heat Transfer Mass Transfer Chemical Reaction Engineering Phase Equilibrium and Distillation Process Dynamics and Control Biochemical Engineering Practical Aspects of Problem-Solving Capabilities Simultaneous Linear Equations Simultaneous Nonlinear Equations Linear, Multiple Linear, and Nonlinear Regressions with Statistical Analyses Partial Differential Equations (Using the Numerical Method of Lines) Curve Fitting by Polynomials with Statistical Analysis Simultaneous Ordinary Differential Equations (Including Problems Involving Stiff Systems, Differential-Algebraic Equations, and Parameter Estimation in Systems of Ordinary Differential Equations) The Book's Web Site (http://www.problemsolvingbook.com) Provides solved and partially solved problem files for all three software packages, plus additional materials Describes discounted purchase options for educational version of POLYMATH available to book purchasers Includes detailed, selected problem solutions in Maple, Mathcad , and Mathematica
  chemical reaction engineering solved problems: Chemical Reactor Analysis and Design Fundamentals James Blake Rawlings, John G. Ekerdt, 2002
  chemical reaction engineering solved problems: New Developments and Application in Chemical Reaction Engineering Hyun-Ku Rhee, In-Sik Nam, Jong Moon Park, 2006-05-10 This Proceedings of APCRE'05 contains the articles that were presented at the 4th Asia-Pacific Chemical Reaction Engineering Symposium (APCRE'05), held at Gyeongju, Korea between June 12 and June 15, 2005, with a theme of New Opportunities of Chemical Reaction Engineering in Asia-Pacific Region. Following the tradition of APCRE Symposia and ISCRE, the scientific program encompassed a wide spectrum of topics, including not only the traditional areas but also the emerging fields of chemical reaction engineering into which the chemical reaction engineers have successfully spearheaded and made significant contributions in recent years. In addition to the 190 papers being accepted, six plenary lectures and 11 invited lectures are placed in two separate chapters in the front.* Provides an overview of new developments and application in chemical reaction engineering* Topics include traditional and emerging fields * Papers reviewed by experts in the field
  chemical reaction engineering solved problems: Fundamentals of Industrial Problem Solving Zdravko I. Stefanov, Eldad Herceg, Carla Schmidt, David M. Jacobson, Dana Livingston, J.P. Chauvel, Sunil Kumar Chaudhary, Christopher Paul Christenson, 2022-08-16 Teaches Readers How to Apply a Structured Problem-Solving Methodology for Industrial Fields Based on Sound Scientific Principles As modern industrial processes have become increasingly complex, complicated multi-factor problems have emerged. These complex problems end up costing companies millions of dollars every day. Existing problem-solving techniques are only effective to a certain point. This book provides a solution to a myriad of industrial problems by using first principles and rigorous hypothesis testing. Key topics covered within the work include: How to use the latest research, advanced modeling, big data mining, analytical testing, and many other techniques to systematically create and test hypotheses surrounding why a process is malfunctioning How to use scenario development to frame a team’s understanding of why a process is malfunctioning How to approach today’s lack of experienced industrial workers, whose failure to approach problem solving from first fundamentals are causing myriad of inefficiencies in industry How to use multiple methodologies together with an emphasis on first principles and mechanistic math modeling as a basis to industrial problem solving Engineers of any discipline working in both research and development of manufacturing environments, along with professionals in any industrial discipline looking to reduce costs will be able to use this work to both understand and pragmatically solve the pressing issues we see in today’s industrial market.
  chemical reaction engineering solved problems: Chemical Reaction Engineering L.K. Doraiswamy, Deniz Uner, 2013-07-15 Filling a longstanding gap for graduate courses in the field, Chemical Reaction Engineering: Beyond the Fundamentals covers basic concepts as well as complexities of chemical reaction engineering, including novel techniques for process intensification. The book is divided into three parts: Fundamentals Revisited, Building on Fundamentals, and Beyon
  chemical reaction engineering solved problems: Principles of Chemical Reactor Analysis and Design Uzi Mann, 2009-03-30 An innovative approach that helps students move from the classroom to professional practice This text offers a comprehensive, unified methodology to analyze and design chemical reactors, using a reaction-based design formulation rather than the common species-based design formulation. The book's acclaimed approach addresses the weaknesses of current pedagogy by giving readers the knowledge and tools needed to address the technical challenges they will face in practice. Principles of Chemical Reactor Analysis and Design prepares readers to design and operate real chemical reactors and to troubleshoot any technical problems that may arise. The text's unified methodology is applicable to both single and multiple chemical reactions, to all reactor configurations, and to all forms of rate expression. This text also . . . Describes reactor operations in terms of dimensionless design equations, generating dimensionless operating curves that depict the progress of individual chemical reactions, the composition of species, and the temperature. Combines all parameters that affect heat transfer into a single dimensionless number that can be estimated a priori. Accounts for all variations in the heat capacity of the reacting fluid. Develops a complete framework for economic-based optimization of reactor operations. Problems at the end of each chapter are categorized by their level of difficulty from one to four, giving readers the opportunity to test and develop their skills. Graduate and advanced undergraduate chemical engineering students will find that this text's unified approach better prepares them for professional practice by teaching them the actual skills needed to design and analyze chemical reactors.
Chemistry | Definition, Topics, Types, History, & Facts | Britannica
Apr 24, 2025 · Most of the materials that occur on Earth, such as wood, coal, minerals, or air, are mixtures of many different and distinct chemical substances. Each pure chemical substance …

Chemical reaction | Definition, Equations, Examples, & Types
May 12, 2025 · A chemical reaction is a process in which one or more substances, the reactants, are converted to one or more different substances, the products. Substances are either chemical …

chemical reaction - Students | Britannica Kids | Homework Help
To describe chemical reactions, scientists use chemical equations, which make use of symbols and formulas for elements and compounds. The chemical equation for the reaction between sodium …

chemical element - Students | Britannica Kids | Homework Help
Any substance that cannot be decomposed into simpler substances by ordinary chemical processes is defined as a chemical element. Only 94 such substances are known to exist in nature (and two …

Periodic table | Definition, Elements, Groups, Charges, Trends,
May 10, 2025 · The periodic table is a tabular array of the chemical elements organized by atomic number, from the element with the lowest atomic number, hydrogen, to the element with the …

chemical energy - Kids | Britannica Kids | Homework Help
Chemical energy is a form of potential energy that is in all substances. Food is the most important source of chemical energy for living things. The chemical energy in food is converted, or …

Organic compound | Definition & Examples | Britannica
Jun 6, 2025 · An organic compound is any chemical compound in which one or more atoms of carbon are covalently linked to atoms of other elements, most commonly hydrogen, oxygen, or …

Silicon | Element, Atom, Properties, Uses, & Facts | Britannica
4 days ago · Silicon, a nonmetallic chemical element in the carbon family that makes up 27.7 percent of Earth’s crust; it is the second most abundant element in the crust, being surpassed …

carbon dioxide - Kids | Britannica Kids | Homework Help
Carbon dioxide is a chemical compound that is usually in the form of a gas. It is made up of one atom of carbon and two atoms of oxygen. Its chemical formula is CO 2. Carbon dioxide was …

chemistry - Kids | Britannica Kids | Homework Help
The basic substances that chemists study are called chemical elements. Each element is made up of tiny particles, or bits, called atoms. Chemical reactions involve atoms or groups of atoms. When …

Chemistry | Definition, Topics, Types, History, & Facts | Britannica
Apr 24, 2025 · Most of the materials that occur on Earth, such as wood, coal, minerals, or air, are mixtures of many different and distinct chemical substances. Each pure chemical substance …

Chemical reaction | Definition, Equations, Examples, & Types
May 12, 2025 · A chemical reaction is a process in which one or more substances, the reactants, are converted to one or more different substances, the products. Substances are either …

chemical reaction - Students | Britannica Kids | Homework Help
To describe chemical reactions, scientists use chemical equations, which make use of symbols and formulas for elements and compounds. The chemical equation for the reaction between …

chemical element - Students | Britannica Kids | Homework Help
Any substance that cannot be decomposed into simpler substances by ordinary chemical processes is defined as a chemical element. Only 94 such substances are known to exist in …

Periodic table | Definition, Elements, Groups, Charges, Trends,
May 10, 2025 · The periodic table is a tabular array of the chemical elements organized by atomic number, from the element with the lowest atomic number, hydrogen, to the element with the …

chemical energy - Kids | Britannica Kids | Homework Help
Chemical energy is a form of potential energy that is in all substances. Food is the most important source of chemical energy for living things. The chemical energy in food is converted, or …

Organic compound | Definition & Examples | Britannica
Jun 6, 2025 · An organic compound is any chemical compound in which one or more atoms of carbon are covalently linked to atoms of other elements, most commonly hydrogen, oxygen, or …

Silicon | Element, Atom, Properties, Uses, & Facts | Britannica
4 days ago · Silicon, a nonmetallic chemical element in the carbon family that makes up 27.7 percent of Earth’s crust; it is the second most abundant element in the crust, being surpassed …

carbon dioxide - Kids | Britannica Kids | Homework Help
Carbon dioxide is a chemical compound that is usually in the form of a gas. It is made up of one atom of carbon and two atoms of oxygen. Its chemical formula is CO 2. Carbon dioxide was …

chemistry - Kids | Britannica Kids | Homework Help
The basic substances that chemists study are called chemical elements. Each element is made up of tiny particles, or bits, called atoms. Chemical reactions involve atoms or groups of atoms. …