Chemistry Of High Energy Materials

Advertisement



  chemistry of high energy materials: Chemistry of High-Energy Materials Thomas M. Klapötke, 2017-08-21 The 4th revised edition expands on the basic chemistry of high energy materials of the precious editions and examines new research developments, including hydrodynamics and ionic liquids. Applications in military and civil fields are discussed. This work is of interest to advanced students in chemistry, materials science and engineering, as well as to all those working in defense technology.
  chemistry of high energy materials: High Energy Materials Jai Prakash Agrawal, 2015-11-20 Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defense organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer.
  chemistry of high energy materials: Chemistry of High-Energy Materials Thomas M. Klapötke, 2012-05-29 This graduate-level textbook in a new revised edition treats the basic chemistry of high energy materials - primary and secondary explosives, propellants, rocket fuel and pyrotechnics - and provides a review of new research developments. Applications in both military and civil fields are discussed. The book also offers new insights into green chemistry requirements and strategies for military applications. This work should be of interest to advanced students in chemistry, materials science and engineering, as well as all those working in defense technology.
  chemistry of high energy materials: Chemistry of Energetic Materials George A. Olah, David R. Squire, 2012-12-02 The study of energetic materials is emerging from one primarily directed toward practical interests to an advanced area of fundamental research, where state-of-the-art methods and theory are used side by side with modern synthetic methods. This timely book integrates the recent experimental, synthetic, and theoretical research of energetic materials. Editors George Olah and David Squire emphasize the importance of structure and mechanism in determining properties and performances. They also explore new spectrometric methods and synthetic approaches in this useful reference. - Discusses structural analysis by x-ray crystallography - Explains chemical dynamics by photofragmentation translational spectroscopy - Covers kinetic analysis by ultrafast absorption and emission spectroscopy - Details syntheses of polycyclic caged amines, fuel additives, and polynitro compounds - Examines computer-aided design of monopropellants - Includes contributions by two Nobel laureates and five members of the National Academy of Sciences
  chemistry of high energy materials: High Energy Density Materials Thomas M. Klapötke, 2007-06-12
  chemistry of high energy materials: Chemistry and Physics of Energetic Materials S.N. Bulusu, 2012-12-06 This book represents a collection of lectures presented at the NATO Advanced study Institute(ASI) on Chemistry & Physics of the Molecular Processes in Energetic Materials, held at Hotel Torre Normanna, Altavilla Milicia, Sicily, Italy, September 3 to 15, 1989. The institute was attended by seventy participants including twenty lecturers, drawn from thirteen countries. The purpose of the institute was to review the major ad vances made in recent years in the theoretical and experi mental aspects of explosives and propellants. In accordance with the format of the NATO ASI, it was arranged to have a relatively small number of speakers to present in depth, re view type lectures emphasizing the basic research aspects of the subject, over a two week period. Most of the speakers gave two lectures, each in excess of one hour with addition al time for discussions. The scope of the meeting was limit ed to molecular and spectroscopic studies since the hydro dynamic aspects of detonation and various performance crite ria of energetic materials are often covered adequately in other international meetings. An attempt was made to have a coherent presentation of various theoretical, computational and spectroscopic approaches to help a better understanding of energetic materials from a molecular point of view. The progress already made in these areas is such that structure property (e. g.
  chemistry of high energy materials: Demystifying Explosives Sethuramasharma Venugopalan, 2015-01-13 Demystifying Explosives: Concepts in High Energy Materials explains the basic concepts of and the science behind the entire spectrum of high energy materials (HEMs) and gives a broad perspective about all types of HEMs and their interrelationships. Demystifying Explosives covers topics ranging from explosives, deflagration, detonation, and pyrotechnics to safety and security aspects of HEMS, looking at their aspects, particularly their inter-relatedness with respect to properties and performance. The book explains concepts related to the molecular structure of HEMs, their properties, performance parameters, detonation and shock waves including explosives and propellants. The theory-based title also deals with important (safety and security) and interesting (constructive applications) aspects connected with HEMs and is of fundamental use to students in their introduction to these materials and applications.
  chemistry of high energy materials: Overviews Of Recent Research On Energetic Materials Donald L Thompson, Robert W Shaw, Thomas B Brill, 2005-08-02 Few books cover experimental and theoretical methods to characterize decomposition, combustion and detonation of energetic materials. This volume, by internationally known and major contributors to the field, is unique because it summarizes the most important recent work, what we know with confidence, and what main areas remain to be investigated. Most chapters comprise summaries of work spanning decades and contain expert commentary available nowhere else. Although energetic materials are its focus, this book provides a guide to modern methods for investigations of condensed and gas-phase reactions. Although these energetic reactions are complex and difficult to study, the work discussed here provides readers with a substantial understanding of the behavior of materials now in use, and a predictive capability for the development of new materials based on target properties.
  chemistry of high energy materials: Green Energetic Materials Tore Brinck, 2014-01-15 This comprehensive book presents a detailed account of research and recent developments in the field of green energetic materials, including pyrotechnics, explosives and propellants. This area is attracting increasing interest in the community as it undergoes a transition from using traditional processes, to more environmentally-friendly procedures. The book covers the entire line of research from the initial theoretical modelling and design of new materials, to the development of sustainable manufacturing processes. It also addresses materials that have already reached the production line, as well as considering future developments in this evolving field.
  chemistry of high energy materials: Energetic Compounds Mohammad Hossein Keshavarz, Thomas M. Klapötke, 2020-05-05 This book discusses methods for the assessment of energetic compounds through heat of detonation, detonation pressure, velocity and temperature, Gurney energy and power. The authors focus on the detonation pressure and detonation velocity of non-ideal aluminized energetic compounds. This 2nd Edition includes an updated and improved presentation of simple, reliable methods for the design, synthesis and development of novel energetic compounds.
  chemistry of high energy materials: Energetic Materials , 2003-11-25 This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on decomposition, crystal and molecular properties. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. Since chemical decomposition is of fundamental importance in energetic performance, this volume begins with a survey of the decomposition processes of a variety of energetic compounds. This is followed by detailed studies of certain compounds and specific mechanisms, such as nitro/aci-nitro tautomerism. Chapter 6 covers the transition from decomposition to crystal properties, with molecular dynamics being the primary analytical tool. The next several chapters deal with different aspects of the crystalline state, again moving from the general to particular. There is also a discussion of methods for computing gas, liquid and solid phase heats of formation. Finally, the last portion of this volume looks at the potential of high-nitrogen molecules as energetic systems; this has been of considerable interest in recent years. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field.
  chemistry of high energy materials: Chemistry of Pyrotechnics Chris Mocella, John A. Conkling, 2010-12-23 Primarily driven by advancing technology and concerns for safety, advancement in the world of pyrotechnics and high-energy materials has exploded in the past 25 years. The promulgation of new government regulations places new and more stringent restrictions on the materials that may be used in energetic mixtures. These regulations now mandate numerous training programs, and initiate other actions, such as OSHA’s Process Safety Management standard, intended to eliminate accidents and incidents. Unfortunately, the US lacks an organized, broad-range academic program to cover the science and use of energetic materials and educate the next generation of pyrotechnicians. Designed as a bridge to allow a smooth and confident transition for personnel coming from a chemistry background into the practical world of explosives, Chemistry of Pyrotechnics: Basic Principles and Theory, Second Edition emphasizes basic chemical principles alongside practical, hands-on knowledge in the preparation of energetic mixtures. It examines the interactions between and adaptations of pyrotechnics to changing technology in areas such as obscuration science and low-signature flame emission. Much more than a simple how-to guide, the book discusses chemical and pyrotechnic principles, components of high-energy mixtures, and elements of ignition, propagation, and sensitivity. It offers heat compositions, including ignition mixes, delays, thermites, and propellants and investigates the production of smoke and sound as well as light and color. Promoting the growth and expansion of pyrotechnics as a science, Chemistry of Pyrotechnics: Basic Principles and Theory, Second Edition provides practitioners with the ability to apply chemical principles and logic to energetic materials and thereby make the field as productive, useful, and safe as possible.
  chemistry of high energy materials: Static Compression of Energetic Materials Suhithi M. Peiris, Gasper J. Piermarini, 2009-01-03 Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.
  chemistry of high energy materials: Organic Chemistry of Explosives Jai Prakash Agrawal, Robert Hodgson, 2007-01-11 Organic Chemistry of Explosives is the first text to bring together the essential methods and routes used for the synthesis of organic explosives in a single volume. Assuming no prior knowledge, the book discusses everything from the simplest mixed acid nitration of toluene, to the complex synthesis of highly energetic caged nitro compounds. Reviews laboratory and industrial methods, which can be used to introduce aliphatic C-nitro, aromatic C-nitro, N-nitro, and nitrate ester functionality into organic compounds Discusses the advantages and disadvantages of each synthetic method or route, with scope, limitations, substrate compatibility and other important considerations Features numerous examples in the form of text, reaction diagrams, and tables.
  chemistry of high energy materials: High Temperature Experiments in Chemistry and Materials Science Ketil Motzfeldt, 2012-12-04 Cutting edge high temperature materials include high temperature superconductors, solid oxide fuel cells, thermoelectric materials and ultrahigh temperature construction materials (including metals, cermets and ceramics) and have applications in key areas such as energy, transportation and space technologies. This book introduces the concepts which underpin research into these critical materials including thermodynamics, kinetics and various physical, chemical and modelling techniques with a focus on practical “how to” methods and covers: Introduction to High Temperature Research Basic Design of High Temperature Furnaces Temperature Measurement Radiation Pyrometry Refractory Materials in the Laboratory Vacuum in Theory and Practice The Design of Vacuum Furnaces and Thermobalances With highly detailed instrument illustrations and an emphasis on the control and measurement of the fundamental properties of temperature, pressure and mass, High Temperature Experiments in Chemistry and Materials Science provides a practical reference on high temperature measurements, for researchers, advanced students and those working in academic or industrial laboratories. Introduction to High Temperature Research Basic Design of High Temperature Furnaces Temperature Measurement Radiation Pyrometry Refractory Materials in the Laboratory Vacuum in Theory and Practice The Design of Vacuum Furnaces and Thermobalances
  chemistry of high energy materials: Chemical Rocket Propulsion Luigi T. De Luca, Toru Shimada, Valery P. Sinditskii, Max Calabro, 2018-06-09 Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in aerospace engineering, and practicing aeronautical engineers and designers, especially those with an interest in propulsion, as well as researchers in energetic materials.
  chemistry of high energy materials: Propellants and Explosives Naminosuke Kubota, 2015-04-23 This third edition of the classic on the thermochemical aspects of the combustion of propellants and explosives is completely revised and updated and now includes a section on green propellants and offers an up-to-date view of the thermochemical aspects of combustion and corresponding applications. Clearly structured, the first half of the book presents an introduction to pyrodynamics, describing fundamental aspects of the combustion of energetic materials, while the second part highlights applications of energetic materials, such as propellants, explosives and pyrolants, with a focus on the phenomena occurring in rocket motors. Finally, an appendix gives a brief overview of the fundamentals of aerodynamics and heat transfer, which is a prerequisite for the study of pyrodynamics. A detailed reference for readers interested in rocketry or explosives technology.
  chemistry of high energy materials: Energetic Materials Ulrich Teipel, 2005 Ideal for explosives specialists, pyrotechnitians, chemical engineers, materials scientists and process engineers, this text covers Energetic Materials.
  chemistry of high energy materials: Environmental Mechanochemistry Matej Baláž, 2021-10-22 This book provides a comprehensive overview on mechanochemistry including its history, high-energy ball milling process, equipment used and fundamentals behind the observed scientific phenomena. It also shows that mechanochemistry is highly applicable in the field of waste treatment. The text reviews 1017 studies utilizing mostly high-energy ball milling for the treatment of various types of consumer, technogenic and agricultural waste. The text is divided into chapters based on individual waste types. The book presents an Appendix compiling all studies arranged according to the application that the recycled waste is meant for. In this way, readers from both academia and companies interested either in the treatment of a particular waste, or particular application might easily locate sections of interest.
  chemistry of high energy materials: Chemistry of High Energy Materials Thomas M. Klapötke, 2025-05-20 Chemistry of High-Energy Materials continues in this new and revised 7th edition to provide fundamental scientific insights into primary and secondary explosives, propellants, rocket fuels and pyrotechnics. It expands with new research developments, including machine learning, new programs (e.g., RoseBoom), the production of propellants, supply of energetic materials in times of war, and flow chemistry. This work is of interest to advanced students in chemistry, materials science and engineering, as well as to all those working in military and defense technology.
  chemistry of high energy materials: Thermal Decomposition and Combustion of Explosives and Propellants G.B. Manelis, 2003-01-30 This unique book investigates the synthesis, kinetics, and thermal decomposition properties and processing of energy-producing materials used in propellants, explosives, pyrotechnic, and gas-generating compositions. Thermal Decomposition and Combustion of Explosives and Propellants provides several mechanisms and stages for the thermal decomposition and combustion reactions of most flammable compounds and their mixtures, such asaliphatic and aromatic nitrocompounds, nitramines, nitroesters, organic azides, furazanes, tetrazols, difluoroamines, polynitrous heterocycles, and onium salts. The authors examine the classic problem of the dependence of explosive activity on molecular structure, using applications to predict the stability, compatibility, and the stabilization of explosives and propellant components. They also offer experimental results examining factors such as subsurface decomposition, evaporation, and dispersion of materials, which can be used to control combustion of condensed systems. Providing several approaches to stability, safety, and controlled combustion of flammable substances, Thermal Decomposition and Combustion of Explosives and Propellants is a multi-dimensional resource for graduate students, researchers and professionals interested in chemical kinetics, the combustion and synthesis of high-energy materials, criminal forensics, and the field of explosives, powders, and solid rocket propellants.
  chemistry of high energy materials: Energetic Materials , 2003-11-25 This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on decomposition, crystal and molecular properties. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. Since chemical decomposition is of fundamental importance in energetic performance, this volume begins with a survey of the decomposition processes of a variety of energetic compounds. This is followed by detailed studies of certain compounds and specific mechanisms, such as nitro/aci-nitro tautomerism. Chapter 6 covers the transition from decomposition to crystal properties, with molecular dynamics being the primary analytical tool. The next several chapters deal with different aspects of the crystalline state, again moving from the general to particular. There is also a discussion of methods for computing gas, liquid and solid phase heats of formation. Finally, the last portion of this volume looks at the potential of high-nitrogen molecules as energetic systems; this has been of considerable interest in recent years.Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field.- Overall emphasis is on theory and computation, presented in the context of relevant experimental work- Presents a unique state-of-the-art treatment of the subject- Contributors are preeminent researchers in the field
  chemistry of high energy materials: Mechanochemical Processes in Energetic Materials Adam A. L. Michalchuk, 2020-11-23 This book uses experimental and computational methods to rationalize and predict for the first time the relative impact sensitivities of a range of energetic materials. Using knowledge of crystal structures, vibrational properties, energy-transfer mechanisms, and experimentally measured sensitivities, it describes a model that leads to excellent correlation with experimental results in all cases. As such, the book paves the way for a new, fully ab initio approach for the design of safer energetic materials based solely on knowledge of their solid-state structures. Energetic materials (explosives, propellants, gas generators, and pyrotechnics) are defined as materials that release heat and/or gaseous products at a high rate upon stimulus by heat, impact, shock, sparks, etc. They have widespread military and civilian uses, including munitions, mining, quarrying, demolition, emergency signaling, automotive safety, and space exploration. One of their most important properties is sensitivity to accidental initiation during manufacture, transport, storage, and operation, which has important implications for their safe use.
  chemistry of high energy materials: Hydrogen Materials Science and Chemistry of Metal Hydrides Michael D. Hampton, Dmitry V. Schur, Svetlana Yu. Zaginaichenko, V.I. Trefilov, 2012-12-06 In September, 1999, with the generous support of NATO, scientists from 18 different nations gathered in Katsiveli, Yalta, Ukraine at the NATO Advanced Research Workshop on Hydrogen Materials Science and Chemistry of Metal Hydrides to present their research and to discuss world energy problems and possible solutions, interactions of hydrogen with materials, the role of hydrogen in materials science, and the chemistry of metal hydrides. High level and highly professional presentations were accompanied by a great deal of discussion and debate of the issues from both fundamental and global perspectives. The result was a large number of new collaborations, new directions, and better understanding of energy and materials issues. The research presented at this meeting can be found in this volume. These papers range from global perspectives such as the new vision of energy and how hydrogen fits into that future, to reviews such as a look at nickel hydride over the last 40 years, to very specific current research. A large number of papers are included on hydrogen and materials. These papers include articles on properties such as superconductivity, diffusion EMF, magnetic properties, physico chemical properties, phase composition, and permeability as a result of the interaction with or incorporation of hydrogen. Also included are papers discussing the use of hydrogen as a processing or alloying agent. The use of hydrogen in the synthesis of battery electrode materials, composite materials, and alloys is also presented.
  chemistry of high energy materials: High Explosives, Propellants, Pyrotechnics Ernst-Christian Koch, 2021 This dictionary contains 739 entries with about 1400 references to the primary literature. Details on the composition, performance, sensitivity and other pertinent properties of Energetic Materials such as High Explosives, Propellants, Pyrotechnics, as well as important ingredients such as Oxidizers, Fuels, Binders, and Modifiers are given and presented partly in over 180 tables with more than 240 structural formulas . In detail the dictionary gives elaborate descriptions of 460 Chemical Substances 170 Pyrotechnic Compositions 360 High Explosive and Propellant Formulations In addition, the basic physical and thermochemical properties of 435 pure substances (elements & compounds) typically occuring as ingredients or reaction products are given too. 150 Figures, schemes and diagrams explain Applications, Test methods, Scientific facilities, and finally Individuals closely tied with the development and investigation of Energetic Materials. The book is intended for readers with a technical or scientific background, active in governmental agencies, research institutes, trade and industry, concerned with the procurement, development, manufacture, investigation and use of Energetic Materials, such as High Explosives, Propellants, Pyrotechnics, Fireworks and Ammunition. The book serves both as a daily reference for the experienced as well as an introduction for the newcomer to the field.
  chemistry of high energy materials: High Energy Electron Diffraction and Microscopy L.-M. Peng, S. L. Dudarev, M. J. Whelan, 2004 This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.
  chemistry of high energy materials: Making the Modern World Vaclav Smil, 2013-12-16 How much further should the affluent world push its material consumption? Does relative dematerialization lead to absolute decline in demand for materials? These and many other questions are discussed and answered in Making the Modern World: Materials and Dematerialization. Over the course of time, the modern world has become dependent on unprecedented flows of materials. Now even the most efficient production processes and the highest practical rates of recycling may not be enough to result in dematerialization rates that would be high enough to negate the rising demand for materials generated by continuing population growth and rising standards of living. This book explores the costs of this dependence and the potential for substantial dematerialization of modern economies. Making the Modern World: Materials and Dematerialization considers the principal materials used throughout history, from wood and stone, through to metals, alloys, plastics and silicon, describing their extraction and production as well as their dominant applications. The evolving productivities of material extraction, processing, synthesis, finishing and distribution, and the energy costs and environmental impact of rising material consumption are examined in detail. The book concludes with an outlook for the future, discussing the prospects for dematerialization and potential constrains on materials. This interdisciplinary text provides useful perspectives for readers with backgrounds including resource economics, environmental studies, energy analysis, mineral geology, industrial organization, manufacturing and material science.
  chemistry of high energy materials: Advanced Energetic Materials National Research Council, Division on Engineering and Physical Sciences, Board on Manufacturing and Engineering Design, Committee on Advanced Energetic Materials and Manufacturing Technologies, 2004-01-30 Advanced energetic materialsâ€explosive fill and propellantsâ€are a critical technology for national security. While several new promising concepts and formulations have emerged in recent years, the Department of Defense is concerned about the nation's ability to maintain and improve the knowledge base in this area. To assist in addressing these concerns, two offices within DOD asked the NRC to investigate and assess the scope and health of the U.S. R&D efforts in energetic materials. This report provides that assessment. It presents several findings about the current R&D effort and recommendations aimed at improving U.S. capabilities in developing new energetic materials technology. This study reviewed U.S. research and development in advanced energetics being conducted by DoD, the DoE national laboratories, industries, and academia, from a list provided by the sponsors. It also: (a) reviewed papers and technology assessments of non-U.S. work in advanced energetics, assessed important parameters, such as validity, viability, and the likelihood that each of these materials can be produced in quantity; (b) identified barriers to scale-up and production, and suggested technical approaches for addressing potential problems; and (c) suggested specific opportunities, strategies, and priorities for government sponsorship of technologies and manufacturing process development.
  chemistry of high energy materials: Distillation Alfons Vogelpohl, 2021-03-08 Distillation based on Mass Transfer Processes, starting from the basic equation of ternary distillation published by Hausen in 1932 and exploiting the properties of this equation covering all modes of distillation. The material is intended as a graduate textbook for an advanced course on distillation but will also help the practicing engineer to better understand the complex interrelationships of multi-component distillation.
  chemistry of high energy materials: Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries Guangmin Zhou, 2017-02-09 This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the “solid-solid” reaction instead of the “sulfur-polysulfides-lithium sulfides” reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives. The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
  chemistry of high energy materials: Mass Balances for Chemical Engineers Gumersindo Feijoo, Juan Manuel Lema, Maria Teresa Moreira, 2020-07-20 The fundamentals of mass balances, relevant for chemical engineers summarized in an easy comprehensible manner. Plenty of example calculations, schemes and flow diagrams facilitate the understanding. Case studies from relevant topics such as sustainable chemistry illustrate the theory behind current applications.
  chemistry of high energy materials: Materials Chemistry Bradley D. Fahlman, 2018-08-28 The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.
  chemistry of high energy materials: The Chemistry of Nanostructured Materials Peidong Yang, 2011 This book is a sequel to the first volume of The Chemistry of Nanostructured Materials. It covers the most exciting developments in the nanostructured materials field for the past five to ten years, with a particular focus on their applications in energy conversion and energy storage. Prominent authors of recognized authority in the field contribute their expertise in the review chapters.
  chemistry of high energy materials: Electrochemistry Helmut Baumgärtel, 2019-09-23 Electrochemical processes are long known but are becoming increasingly important again, due to modern applications, such as electro-mobility or energy storage. Thus, electrochemistry is not only a topic for chemists and physicists, but also for technical engineers. This book addresses all aspects of electrochemistry, which are important in these days: electrodes, corrosion, interphases, processes, energy storage, analytical methods, and sensors.
  chemistry of high energy materials: Nano-Energetic Materials Shantanu Bhattacharya, Avinash Kumar Agarwal, T. Rajagopalan, Vinay K. Patel, 2018-11-09 This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.
  chemistry of high energy materials: High-Energy-Density Fuels for Advanced Propulsion Ji-Jun Zou, Xiangwen Zhang, Lun Pan, 2020-11-09 This book comprehensively and systematically demonstrates the theory and practice of designing, synthesizing and improving the performance of fuels. The contents range from polycyoalkane fuels, strained fuels, alky-diamondoid fuels, hypergolic and nanofluid fuels derived from fossil and biomass. All the chapters together clearly describe the important aspects of high-energy-density fuels including molecular design, synthesis route, physiochemical properties, and their application in improving the aerocraft performance. Vivid schematics and illustrations throughout the book enhance the accessibility to the relevant theory and technologies. This book provides the readers with fundamentals on high-energy-density fuels and their potential in advanced aerospace propulsion, and also provides the readers with inspiration for new development of advanced aerospace fuels.
  chemistry of high energy materials: Computational Approaches for Chemistry Under Extreme Conditions Nir Goldman, 2019-02-18 This book presents recently developed computational approaches for the study of reactive materials under extreme physical and thermodynamic conditions. It delves into cutting edge developments in simulation methods for reactive materials, including quantum calculations spanning nanometer length scales and picosecond timescales, to reactive force fields, coarse-grained approaches, and machine learning methods spanning microns and nanoseconds and beyond. These methods are discussed in the context of a broad range of fields, including prebiotic chemistry in impacting comets, studies of planetary interiors, high pressure synthesis of new compounds, and detonations of energetic materials. The book presents a pedagogical approach for these state-of-the-art approaches, compiled into a single source for the first time. Ultimately, the volume aims to make valuable research tools accessible to experimentalists and theoreticians alike for any number of scientific efforts, spanning many different types of compounds and reactive conditions.
  chemistry of high energy materials: Intrinsic Structures and Properties of Energetic Materials Chaoyang Zhang, Jing Huang, Rupeng Bu, 2023-06-30 This book highlights the intrinsic structures of all kinds of energetic compounds and some structure–property relationships therein. Energetic materials are a class of energy materials that can transiently release a large amount of gases and heat by self-redox after stimulated and usually refer to explosives, propellants and pyrotechnics. Nowadays, in combination with various theories and simulation-aided material design technologies, many new kinds of energetic materials like energetic extended solids, energetic ionic salts, energetic metal organic frames, energetic co-crystals and energetic perovskites have been created, in addition to traditional energetic molecular crystals. It is somewhat dazzling, and an issue of how we can understand these new types of energetic materials is raised. In the past about 20 years, we were immersed in the computational energetic materials. By means of defining a concept of intrinsic structures of energetic materials, which refers to the crystal packing structure of energetic materials, as well as molecule for molecular solid specially, the microscopic structures have been mostly clarified, and related with many macroscopic properties and performances, with molecular simulations. This book presents our understanding about it. Thereby, a simply and new way to readily understand energetic materials is expected to be paved, based on this book. It contains energetic molecular crystals, energetic ionic crystals, energetic atomic crystals, energetic metallic crystals and energetic mixed-type crystals and the substructures closest to crystal packing. Meanwhile, the common intermolecular interactions in energetic crystals will be introduced. In addition, theoretical and simulation methods for treating the intrinsic structures will be briefed, as they are the main tools to reveal the molecules and crystals. Besides, the polymorphism as a level of intrinsic structures will be briefly discussed. In the final of this book, we introduce the crystal engineering of energetic materials. This book features the first proposal of intrinsic structure and crystal engineering of energetic materials and the understanding of the properties and performances of energetic materials by maintaining a concept that structure determines property. It helps to promote the rationality in creating new energetic materials, rather than increase experience.
  chemistry of high energy materials: Interfacial Physical Chemistry of High-Temperature Melts Kusuhiro Mukai, Taishi Matsushita, 2019-08-02 This English translation of a well-known Japanese book covers interfacial physicochemistry in materials science, especially for iron- and steelmaking processes. Interfacial Physical Chemistry of High-Temperature Melts bridges the gap between the basics and applications of physicochemistry. The book begins with an overview of the fundamentals of interfacial physical chemistry and discusses surface tension, describing the derivation of important equations to guide readers to a deep understanding of the phenomenon. The book then goes on to introduce interfacial properties of high-temperature melts, especially the Marangoni effect, and discusses applications to materials processing at high temperature focusing on recent research results by the author and the co-workers. This book is aimed at researchers, graduate students, and professionals in materials processing. Video clips of in-situ observation including experiments under microgravity condition and x-ray observation are available for download on the publisher's website to allow for a deeper understanding.
Chemistry - Wikipedia
Chemistry is the scientific study of the properties and behavior of matter. [1] [2] It is a physical science within the natural sciences that studies the chemical elements that make up matter …

Chemistry | Definition, Topics, Types, History, & Facts ...
Apr 24, 2025 · Chemistry, the science of the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that …

Chemistry - Khan Academy
If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and …

1.1: What is Chemistry? - Chemistry ... - Chemistry LibreTexts
Jun 26, 2023 · Physical chemistry: Physical chemistry is the study of macroscopic properties, atomic properties, and phenomena in chemical systems. A physical chemist may study such …

What is chemistry? - New Scientist
Chemistry is the study of matter, analysing its structure, properties and behaviour to see what happens when they change in chemical reactions. As such, it can be considered a branch of …

Chemistry - Wikipedia
Chemistry is the scientific study of the properties and behavior of matter. [1] [2] It is a physical science within the natural sciences that studies the chemical elements that make up matter …

Chemistry | Definition, Topics, Types, History, & Facts ...
Apr 24, 2025 · Chemistry, the science of the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that …

Chemistry - Khan Academy
If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and …

1.1: What is Chemistry? - Chemistry ... - Chemistry LibreTexts
Jun 26, 2023 · Physical chemistry: Physical chemistry is the study of macroscopic properties, atomic properties, and phenomena in chemical systems. A physical chemist may study such …

What is chemistry? - New Scientist
Chemistry is the study of matter, analysing its structure, properties and behaviour to see what happens when they change in chemical reactions. As such, it can be considered a branch of …