Advertisement
complex numbers quaternions octonions: Division Algebras: G.M. Dixon, 2013-06-29 I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game. This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics. |
complex numbers quaternions octonions: On Quaternions and Octonions John H. Conway, Derek A. Smith, 2003-01-23 This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less f |
complex numbers quaternions octonions: Octonions Alexander McAulay, 1898 |
complex numbers quaternions octonions: The Geometry Of The Octonions Tevian Dray, Corinne A Manogue, 2015-04-08 There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions. |
complex numbers quaternions octonions: Visualizing Quaternions Andrew J. Hanson, 2006-02-06 Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions. |
complex numbers quaternions octonions: Division Algebras: G.M. Dixon, 2013-02-14 I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game. This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics. |
complex numbers quaternions octonions: Dual Quaternions and Their Associated Clifford Algebras Ronald Goldman, 2023-09-29 Clifford algebra for dual quaternions has emerged recently as an alternative to standard matrix algebra as a computational framework for computer graphics. This book presents dual quaternions and their associated Clifford algebras in a new light, accessible to and geared toward the computer graphics community. Collecting all the associated formulas and theorems in one place, this book provides an extensive and rigorous treatment of dual quaternions, as well as showing how two models of Clifford algebra emerge naturally from the theory of dual quaternions. Each section comes complete with a set of exercises to help readers sharpen and practice their understanding. This book is accessible to anyone with a basic knowledge of quaternion algebra and is of particular use to forward-thinking members of the computer graphics community. |
complex numbers quaternions octonions: Understanding Quaternions Peng Du, Dong Ding ([Editor of Nova Science Publishers]), Zhuoyue Li ([Editor of Nova Science Publishers]), 2020 Quaternions are members of a noncommutative division algebra first invented by William Rowan Hamilton. They form an interesting algebra where each object contains 4 scalar variables, instead of Euler angles, which is useful to overcome the gimbal lock phenomenon when treating the rotation of objects. This book is about the mathematical basics and applications of quaternions. The first four chapters mainly concerns the mathematical theories, while the latter three chapters are related with three application aspects. It is expected to provide useful clues for researchers and engineers in the related area. In detail, this book is organized as follows: In Chapter 1, mathematical basics including the quaternion algebra and operations with quaternions, as well as the relationships of quaternions with other mathematical parameters and representations are demonstrated. In Chapter 2, how quaternions are formulated in Clifford Algebra, how it is used in explaining rotation group in symplectic vector space and parallel transformation in holonomic dynamics are presented. In Chapter 3, the wave equation for a spin 3/2 particle, described by 16-component vector-bispinor, is investigated in spherical coordinates. In Chapter 4, hyperbolic Lobachevsky and spherical Riemann models, parameterized coordinates with spherical and cylindric symmetry are studied. In Chapter 5, ship hydrodynamics with allowance of trim and sinkage is investigated and validated with experiments. In Chapter 6, the ballast flying phenomenon based on Discrete Discontinuous Analysis is presented. In Chapter 7, a numerical study is proposed to analyze the effect of the caisson sliding subjected to a hydrodynamic loading in the stability of the rear side of the rubble mound breakwater-- |
complex numbers quaternions octonions: Non-Associative Algebra and Its Applications Lev Sabinin, Larissa Sbitneva, Ivan Shestakov, 2006-01-13 With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences. This book covers material such as Jordan superalgebras, nonassociative deformations, nonassociative generalization of Hopf algebras, the structure of free algebras, derivations of Lie algebras, and the identities of Albert algebra. It also includes applications of smooth quasigroups and loops to differential geometry and relativity. |
complex numbers quaternions octonions: Quaternions and Rotation Sequences J. B. Kuipers, 1999 The book is an exposition of the quaternion, a 4-tuple, and its primary application in a rotation operator. But Kuipers also presents the more conventional and familiar 3 x 3 (9-element) matrix rotation operator. These parallel presentations allow the reader to judge which approaches are preferable for specific applications. The first part present introductory material and establish the book's terminology and notation. The next part presents the mathematical properties of quaternions, including quaternion algebra and geometry. It includes more advanced special topics in spherical trigonometry, along with an introduction to quaternion calculus and perturbation theory, required in many situations involving dynamics and kinematics. In the last part, Kuipers discusses state-of-the-art applications. He presents a six degree-of-freedom electromagnetic position and orientation transducer and concludes by discussing the computer graphics necessary for the development of applications in virtual reality. |
complex numbers quaternions octonions: 2019-20 MATRIX Annals Jan de Gier, Cheryl E. Praeger, Terence Tao, 2021-02-10 MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX. |
complex numbers quaternions octonions: Before the Beginning Martin J. Rees, 2002 The experimental and theoretical successes of cosmology in recent years offer the most dramatic enlargement of our concept of the universe since astronomers first realised the Sun's true place among the stars. In this groundbreaking, thought-provoking and accessible book Professor Sir Martin Rees argues that our universe is just one element in an infinite ensemble, a cosmic archipelago where impassable barriers prohibit communication between the islands. Our 'home universe' is an exceptional member of this ensemble, however, not least because it contains creatures able to observe it and contemplate its nature, past and future. One of these is Rees himself: one of the most creative and original of contemporary scientists, and a wonderful guide to the mysteries of the cosmos. |
complex numbers quaternions octonions: Foundation Mathematics for Computer Science John Vince, 2015-08-07 John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts. |
complex numbers quaternions octonions: Compact Projective Planes Helmut Salzmann, Dieter Betten, Theo Grundhöfer, Hermann Hähl, Rainer Löwen, Markus Stroppel, 2011-06-24 The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021) |
complex numbers quaternions octonions: Octonions, Jordan Algebras and Exceptional Groups Tonny A. Springer, Ferdinand D. Veldkamp, 2013-12-21 The 1963 Göttingen notes of T. A. Springer are well-known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra. In the group-theoretical part use is made of some results from the theory of linear algebraic groups. The book will be useful to mathematicians interested in octonion algebras and Albert algebras, or in exceptional groups. It is suitable for use in a graduate course in algebra. |
complex numbers quaternions octonions: Numbers Heinz-Dieter Ebbinghaus, 1991 This book is about all kinds of numbers, from rationals to octonians, reals to infinitesimals. It is a story about a major thread of mathematics over thousands of years, and it answers everything from why Hamilton was obsessed with quaternions to what the prospect was for quaternionic analysis in the 19th century. It glimpses the mystery surrounding imaginary numbers in the 17th century and views some major developments of the 20th century. |
complex numbers quaternions octonions: geometry i , |
complex numbers quaternions octonions: Abstract Linear Algebra Morton L. Curtis, 1990-06-25 Intended for a first course on the subject, this text begins from scratch and develops the standard topics of Linear Algebra. Its progresses simply towards its ultimate goal, the Theorem of Hurwitz, which argues that the only normed algebras over the real numbers are the real numbers, the complex numbers, the quaternions, and the octonions. The book stresses the complete logical development of the subject. |
complex numbers quaternions octonions: Advances in Quantum Field Theory Sergey Ketov, 2012-02-03 Quantum Field Theory is now well recognized as a powerful tool not only in Particle Physics but also in Nuclear Physics, Condensed Matter Physics, Solid State Physics and even in Mathematics. In this book some current applications of Quantum Field Theory to those areas of modern physics and mathematics are collected, in order to offer a deeper understanding of known facts and unsolved problems. |
complex numbers quaternions octonions: Hypercomplex Numbers I.L. Kantor, A.S. Solodovnikov, 2011-09-21 This book deals with various systems of numbers that can be constructed by adding imaginary units to the real numbers. The complex numbers are a classical example of such a system. One of the most important properties of the complex numbers is given by the identity (1) Izz'l = Izl·Iz'I· It says, roughly, that the absolute value of a product is equal to the product of the absolute values of the factors. If we put z = al + a2i, z' = b+ bi, 1 2 then we can rewrite (1) as The last identity states that the product of a sum of two squares by a sum of two squares is a sum of two squares. It is natural to ask if there are similar identities with more than two squares, and how all of them can be described. Already Euler had given an example of an identity with four squares. Later an identity with eight squares was found. But a complete solution of the problem was obtained only at the end of the 19th century. It is substantially true that every identity with n squares is linked to formula (1), except that z and z' no longer denote complex numbers but more general numbers where i,j, . . . , I are imaginary units. One of the main themes of this book is the establishing of the connection between identities with n squares and formula (1). |
complex numbers quaternions octonions: Catalan Numbers with Applications Thomas Koshy, 2009 This book presents a clear and comprehensive introduction to one of the truly fascinating topics in mathematics: Catalan numbers. They crop up in chess, computer programming and even train tracks. In addition to lucid descriptions of the mathematics and history behind Catalan numbers, Koshy includes short biographies of the prominent mathematicians who have worked with the numbers. |
complex numbers quaternions octonions: Naive Lie Theory John Stillwell, 2008-12-15 In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994). |
complex numbers quaternions octonions: Not Even Wrong Peter Woit, 2011-08-31 Not Even Wrong is a fascinating exploration of our attempts to come to grips with perhaps the most intellectually demanding puzzle of all: how does the universe work at its most fundamnetal level? The book begins with an historical survey of the experimental and theoretical developments that led to the creation of the phenomenally successful 'Standard Model' of particle physics around 1975. Despite its successes, the Standard Model does not answer all the key questions and physicists continuing search for answers led to the development of superstring theory. However, after twenty years, superstring theory has failed to advance beyond the Standard Model. The absence of experimental evidence is at the core of this controversial situation which means that it is impossible to prove that superstring theory is either right or wrong. To date, only the arguments of the theory's advocates have received much publicity. Not Even Wrong provides readers with another side of the story. |
complex numbers quaternions octonions: A Taste of Jordan Algebras Kevin McCrimmon, 2006-05-29 This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses. |
complex numbers quaternions octonions: The Realm of Sedenions David R Ely, 2024-05-22 The Realm of Sedenions: A Look Into Higher-Complex Numbers dives into the fascinating world of sedenions, a 16-dimensional number system with unique properties. The book explores the motivation behind studying sedenions, their formal definition with addition and non-commutative, non-associative multiplication, and how they differ from familiar number systems like real and complex numbers. While sedenions lack widespread practical applications yet, the book delves into potential areas of exploration in physics and computer science. It also highlights the challenges mathematicians face due to the complex multiplication rules and the lack of a straightforward geometric interpretation for these high-dimensional numbers. The book provides historical context by mentioning James Joseph Sylvester, who introduced sedenions. While directly visualizing 16 dimensions is difficult, the book discusses potential approaches like subspace projections and geometric analogies to gain a better understanding. Exercises tailored to the audience's level and a resource section for further exploration round out the book, making it a valuable resource for anyone curious about venturing beyond the realm of familiar numbers. |
complex numbers quaternions octonions: Quaternions and Cayley Numbers J.P. Ward, 2012-12-06 In essence, this text is written as a challenge to others, to discover significant uses for Cayley number algebra in physics. I freely admit that though the reading of some sections would benefit from previous experience of certain topics in physics - particularly relativity and electromagnetism - generally the mathematics is not sophisticated. In fact, the mathematically sophisticated reader, may well find that in many places, the rather deliberate progress too slow for their liking. This text had its origin in a 90-minute lecture on complex numbers given by the author to prospective university students in 1994. In my attempt to develop a novel approach to the subject matter I looked at complex numbers from an entirely geometric perspective and, no doubt in line with innumerable other mathematicians, re-traced steps first taken by Hamilton and others in the early years of the nineteenth century. I even enquired into the possibility of using an alternative multiplication rule for complex numbers (in which argzlz2 = argzl- argz2) other than the one which is normally accepted (argzlz2 = argzl + argz2). Of course, my alternative was rejected because it didn't lead to a 'product' which had properties that we now accept as fundamental (i. e. |
complex numbers quaternions octonions: Introduction to Octonion and Other Non-Associative Algebras in Physics Susumu Okubo, 1995-08-03 In this book, the author aims to familiarize researchers and graduate students in both physics and mathematics with the application of non-associative algebras in physics.Topics covered by the author range from algebras of observables in quantum mechanics, angular momentum and octonions, division algebra, triple-linear products and YangSHBaxter equations. The author also covers non-associative gauge theoretic reformulation of Einstein's general relativity theory and so on. Much of the material found in this book is not available in other standard works. |
complex numbers quaternions octonions: Rotations, Quaternions, and Double Groups Simon L. Altmann, 2013-04-09 This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems. Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the geometry, topology, and algebra of rotations. Some familiarity with the basics of group theory is assumed, but the text assists students in developing the requisite mathematical tools as necessary. |
complex numbers quaternions octonions: Quantum Theory, Groups and Representations Peter Woit, 2017-11-01 This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations. |
complex numbers quaternions octonions: Clifford Algebras Rafal Ablamowicz, 2012-12-06 The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers. |
complex numbers quaternions octonions: Imaginary Mathematics for Computer Science John Vince, 2018-08-16 The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton’s quaternions, Cayley’s octonions, to Grassmann’s geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable. The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton’s invention of quaternions, and Cayley’s development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger’s famous wave equation. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science. |
complex numbers quaternions octonions: The Princeton Companion to Mathematics Timothy Gowers, June Barrow-Green, Imre Leader, 2010-07-18 The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger |
complex numbers quaternions octonions: The Book of Numbers John H. Conway, Richard Guy, 2012-12-06 ...the great feature of the book is that anyone can read it without excessive head scratching...You'll find plenty here to keep you occupied, amused, and informed. Buy, dip in, wallow. -IAN STEWART, NEW SCIENTIST ...a delightful look at numbers and their roles in everything from language to flowers to the imagination. -SCIENCE NEWS ...a fun and fascinating tour of numerical topics and concepts. It will have readers contemplating ideas they might never have thought were understandable or even possible. -WISCONSIN BOOKWATCH This popularization of number theory looks like another classic. -LIBRARY JOURNAL |
complex numbers quaternions octonions: Topological Geometrodynamics Matti Pitkanen, 2016-03-03 Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology. |
complex numbers quaternions octonions: Mathematics and Its History John Stillwell, 2013-04-17 From the reviews of the first edition: There are many books on the history of mathematics in which mathematics is subordinated to history. This is a book in which history is definitely subordinated to mathematics. It can be described as a collection of critical historical essays dealing with a large variety of mathematical disciplines and issues, and intended for a broad audience. ... we know of no book on mathematics and its history that covers half as much nonstandard material. Even when dealing with standard material, Stillwell manages to dramatize it and to make it worth rethinking. In short, his book is a splendid addition to the genre of works that build royal roads to mathematical culture for the many. (Mathematical Intelligencer) The discussion is at a deep enough level that I suspect most trained mathematicians will find much that they do not know, as well as good intuitive explanations of familiar facts. The careful exposition, lightness of touch, and the absence of technicalities should make the book accessible to most senior undergraduates. (American Mathematical Monthly) |
complex numbers quaternions octonions: Regularization in Orbital Mechanics Javier Roa, 2017-09-25 Regularized equations of motion can improve numerical integration for the propagation of orbits, and simplify the treatment of mission design problems. This monograph discusses standard techniques and recent research in the area. While each scheme is derived analytically, its accuracy is investigated numerically. Algebraic and topological aspects of the formulations are studied, as well as their application to practical scenarios such as spacecraft relative motion and new low-thrust trajectories. |
complex numbers quaternions octonions: Quaternions for Computer Graphics John Vince, 2021-09-02 If you have ever wondered what quaternions are — then look no further, John Vince will show you how simple and useful they are. This 2nd edition has been completely revised and includes extra detail on the invention of quaternions, a complete review of the text and equations, all figures are in colour, extra worked examples, an expanded index, and a bibliography arranged for each chapter. Quaternions for Computer Graphics includes chapters on number sets and algebra, imaginary and complex numbers, the complex plane, rotation transforms, and a comprehensive description of quaternions in the context of rotation. The book will appeal to students of computer graphics, computer science and mathematics, as well as programmers, researchers, academics and professional practitioners interested in learning about quaternions. John Vince explains in an easy-to-understand language, with the aid of useful figures, how quaternions emerged, gave birth to modern vector analysis, disappeared, and reemerged to be adopted by the flight simulation industry and computer graphics. This book will give you the confidence to use quaternions within your every-day mathematics, and explore more advanced texts. |
complex numbers quaternions octonions: The Road to Reality Roger Penrose, 2021-06-09 **WINNER OF THE 2020 NOBEL PRIZE IN PHYSICS** The Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit. 'Roger Penrose is the most important physicist to work in relativity theory except for Einstein. He is one of the very few people I've met in my life who, without reservation, I call a genius' Lee Smolin |
Complex | Rap Music, Sneakers, Streetwear Style, Internet...
Complex is the best source for everything from rappers like Kanye West, Drake, and Kendrick Lamar to sneakers from Nike, Jordan, Adidas, to streetwear from Supreme, KITH, and A …
Trending Rap & Hip-Hop News, Songs, & Interviews - Complex
Complex Music is the best source for the latest rap news, interviews, and more about hip-hop and your favorite rappers.
Sneakers: Latest Sneaker News, Release Dates & Guides
Complex Sneakers is the daily destination for sneakerheads. Find the latest on sneaker news, release dates, exclusive collaborations, collections & more.
Kai Cenat Launches 'Streamer University,' Invites Fans to.
May 6, 2025 · The platform will teach aspiring creators how to up their streaming game. | Complex
An Idiot's Guide to EDM Genres - Complex
Oct 13, 2017 · An Idiot's Guide to EDM Genres Take a look at some of the most well-known genres in EDM today, with a listing of notable subgenres, artists, and labels within each.
Complex | Rap Music, Sneakers, Streetwear Style, Internet...
Complex is the best source for everything from rappers like Kanye West, Drake, and Kendrick Lamar to sneakers from Nike, Jordan, Adidas, to streetwear from Supreme, KITH, and A …
Trending Rap & Hip-Hop News, Songs, & Interviews - Complex
Complex Music is the best source for the latest rap news, interviews, and more about hip-hop and your favorite rappers.
Sneakers: Latest Sneaker News, Release Dates & Guides - Complex
Complex Sneakers is the daily destination for sneakerheads. Find the latest on sneaker news, release dates, exclusive collaborations, collections & more.
Kai Cenat Launches 'Streamer University,' Invites Fans to... - Complex
May 6, 2025 · The platform will teach aspiring creators how to up their streaming game. | Complex
An Idiot's Guide to EDM Genres - Complex
Oct 13, 2017 · An Idiot's Guide to EDM Genres Take a look at some of the most well-known genres in EDM today, with a listing of notable subgenres, artists, and labels within each.