Civil Engineering Optimization Problems

Advertisement



  civil engineering optimization problems: Advances in Structural Engineering—Optimization Sinan Melih Nigdeli, Gebrail Bekdaş, Aylin Ece Kayabekir, Melda Yucel, 2020-12-04 This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.
  civil engineering optimization problems: Optimization and Control Methods in Industrial Engineering and Construction Honglei Xu, Xiangyu Wang, 2014-01-07 This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and construction management.
  civil engineering optimization problems: Optimization for Engineering Problems Kaushik Kumar, J. Paulo Davim, 2019-07-10 Optimization is central to any problem involving decision-making in engineering. Optimization theory and methods deal with selecting the best option regarding the given objective function or performance index. New algorithmic and theoretical techniques have been developed for this purpose, and have rapidly diffused into other disciplines. As a result, our knowledge of all aspects of the field has grown even more profound. In Optimization for Engineering Problems, eminent researchers in the field present the latest knowledge and techniques on the subject of optimization in engineering. Whereas the majority of work in this area focuses on other applications, this book applies advanced and algorithm-based optimization techniques specifically to problems in engineering.
  civil engineering optimization problems: Teaching Learning Based Optimization Algorithm R. Venkata Rao, 2015-11-14 Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
  civil engineering optimization problems: Engineering Optimization Singiresu S. Rao, 1996-02-29 In Engineering Optimization, Professor Singiresu S. Rao provides an application-oriented presentation of the full array of classical and newly developed optimization techniques now being used by engineers in a wide range of industries.
  civil engineering optimization problems: Metaheuristic Optimization Algorithms in Civil Engineering: New Applications Ali Kaveh, Armin Dadras Eslamlou, 2020-04-15 This book discusses the application of metaheuristic algorithms in a number of important optimization problems in civil engineering. Advances in civil engineering technologies require greater accuracy, efficiency and speed in terms of the analysis and design of the corresponding systems. As such, it is not surprising that novel methods have been developed for the optimal design of real-world systems and models with complex configurations and large numbers of elements. This book is intended for scientists, engineers and students wishing to explore the potential of newly developed metaheuristics in practical problems. It presents concepts that are not only applicable to civil engineering problems, but can also used for optimizing problems related to mechanical, electrical, and industrial engineering. It is an essential resource for civil, mechanical and electrical engineers who use optimization methods for design, as well as for students and researchers interested in structural optimization.
  civil engineering optimization problems: Optimization and Artificial Intelligence in Civil and Structural Engineering B.H. Topping, 2013-11-11 This volume and its companion volume includes the edited versions of the principal lectures and selected papers presented at the NATO Advanced Study Institute on Optimization and Decision Support Systems in Civil Engineering. The Institute was held in the Department of Civil Engineering at Heriot-Watt University, Edinburgh from June 25th to July 6th 1989 and was attended by eighty participants from Universities and Research Institutes around the world. A number of practising civil and structural engineers also attended. The lectures and papers have been divided into two volumes to reflect the dual themes of the Institute namely Optimization and Decision Support Systems in Civil Engineering. Planning for this ASI commenced in late 1986 when Andrew Templeman and I discussed developments in the use of the systems approach in civil engineering. A little later it became clear that much of this approach could be realised through the use of knowledge-based systems and artificial intelligence techniques. Both Don Grierson and John Gero indicated at an early stage how important it would be to include knowledge-based systems within the scope of the Institute. The title of the Institute could have been: 'Civil Engineering Systems' as this would have reflected the range of systems applications to civil engineering problems considered by the Institute. These volumes therefore reflect the full range of these problems including: structural analysis and design; water resources engineering; geotechnical engineering; transportation and environmental engineering.
  civil engineering optimization problems: Metaheuristic Optimization Algorithms in Civil Engineering: New Applications Ali Kaveh, Armin Dadras Eslamlou, 2020-04-14 This book discusses the application of metaheuristic algorithms in a number of important optimization problems in civil engineering. Advances in civil engineering technologies require greater accuracy, efficiency and speed in terms of the analysis and design of the corresponding systems. As such, it is not surprising that novel methods have been developed for the optimal design of real-world systems and models with complex configurations and large numbers of elements. This book is intended for scientists, engineers and students wishing to explore the potential of newly developed metaheuristics in practical problems. It presents concepts that are not only applicable to civil engineering problems, but can also used for optimizing problems related to mechanical, electrical, and industrial engineering. It is an essential resource for civil, mechanical and electrical engineers who use optimization methods for design, as well as for students and researchers interested in structural optimization.
  civil engineering optimization problems: Metaheuristics and Optimization in Civil Engineering Xin-She Yang, Gebrail Bekdaş, Sinan Melih Nigdeli, 2015-12-10 This timely book deals with a current topic, i.e. the applications of metaheuristic algorithms, with a primary focus on optimization problems in civil engineering. The first chapter offers a concise overview of different kinds of metaheuristic algorithms, explaining their advantages in solving complex engineering problems that cannot be effectively tackled by traditional methods, and citing the most important works for further reading. The remaining chapters report on advanced studies on the applications of certain metaheuristic algorithms to specific engineering problems. Genetic algorithm, bat algorithm, cuckoo search, harmony search and simulated annealing are just some of the methods presented and discussed step by step in real-application contexts, in which they are often used in combination with each other. Thanks to its synthetic yet meticulous and practice-oriented approach, the book is a perfect guide for graduate students, researchers and professionals willing to applying metaheuristic algorithms in civil engineering and other related engineering fields, such as mechanical, transport and geotechnical engineering. It is also a valuable aid for both lectures and advanced engineering students.
  civil engineering optimization problems: Engineering Design Optimization Joaquim R. R. A. Martins, Andrew Ning, 2021-11-18 A rigorous yet accessible graduate textbook covering both fundamental and advanced optimization theory and algorithms.
  civil engineering optimization problems: Computational Optimization, Methods and Algorithms Slawomir Koziel, Xin-She Yang, 2011-06-17 Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.
  civil engineering optimization problems: Introduction to Optimum Design Jasbir Singh Arora, 2011-08-12 Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB® are featured as learning and teaching aids. - Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Introduction to MATLAB Optimization Toolbox - Practical design examples introduce students to the use of optimization methods early in the book - New example problems throughout the text are enhanced with detailed illustrations - Optimum design with Excel Solver has been expanded into a full chapter - New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses
  civil engineering optimization problems: Metaheuristic Applications in Structures and Infrastructures Mohammed Ghasem Sahab, Vassili V. Toropov, Amir Hossein Gandomi, 2013-01-31
  civil engineering optimization problems: Applications of Metaheuristic Optimization Algorithms in Civil Engineering A. Kaveh, 2016-11-30 The book presents recently developed efficient metaheuristic optimization algorithms and their applications for solving various optimization problems in civil engineering. The concepts can also be used for optimizing problems in mechanical and electrical engineering.
  civil engineering optimization problems: Elements of Structural Optimization Raphael T. Haftka, Zafer Gürdal, M.P. Kamat, 2013-03-14 The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most engineers who design structures employ complex general-purpose software packages for structural analysis. Often they do not have any access to the source the details of program, and even more frequently they have only scant knowledge of the structural analysis algorithms used in this software packages. Therefore the major challenge faced by researchers in structural optimization is to develop methods that are suitable for use with such software packages. Another major challenge is the high computational cost associated with the analysis of many complex real-life problems. In many cases the engineer who has the task of designing a structure cannot afford to analyze it more than a handful of times.
  civil engineering optimization problems: Metaheuristics in Water, Geotechnical and Transport Engineering Xin-She Yang, Amir Hossein Gandomi, Siamak Talatahari, Amir Hossein Alavi, 2012-09 Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work
  civil engineering optimization problems: Multiobjective Optimization Yann Collette, Patrick Siarry, 2013-06-29 From whatever domain they come, engineers are faced daily with optimization problems that requires conflicting objectives to be met. This monograph systematically presents several multiobjective optimization methods accompanied by many analytical examples. Each method or definition is clarified, when possible, by an illustration. Multiobjective Optimization treats not only engineering problems, e.g in mechanics, but also problems arising in operations research and management. It explains how to choose the most suitable method to solve a given problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids. This book is intended for engineering students, and those in applied mathematics, algorithmics, economics (operational research), production management, and computer scientists.
  civil engineering optimization problems: New Optimization Techniques in Engineering Godfrey C. Onwubolu, B. V. Babu, 2004-01-21 Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines – presenting both the background of the subject area and the techniques for solving the problems.
  civil engineering optimization problems: Numerical Optimization in Engineering and Sciences Debashis Dutta, Biswajit Mahanty, 2020-06-17 This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.
  civil engineering optimization problems: Cohort Intelligence: A Socio-inspired Optimization Method Anand Jayant Kulkarni, Ganesh Krishnasamy, Ajith Abraham, 2016-09-22 This Volume discusses the underlying principles and analysis of the different concepts associated with an emerging socio-inspired optimization tool referred to as Cohort Intelligence (CI). CI algorithms have been coded in Matlab and are freely available from the link provided inside the book. The book demonstrates the ability of CI methodology for solving combinatorial problems such as Traveling Salesman Problem and Knapsack Problem in addition to real world applications from the healthcare, inventory, supply chain optimization and Cross-Border transportation. The inherent ability of handling constraints based on probability distribution is also revealed and proved using these problems.
  civil engineering optimization problems: Group Search Optimization for Applications in Structural Design Lijuan Li, Feng Liu, 2011-05-27 Civil engineering structures such as buildings, bridges, stadiums, and offshore structures play an import role in our daily life. However, constructing these structures requires lots of budget. Thus, how to cost-efficiently design structures satisfying all required design constraints is an important factor to structural engineers. Traditionally, mathematical gradient-based optimal techniques have been applied to the design of optimal structures. While, many practical engineering optimal problems are very complex and hard to solve by traditional method. In the past few decades, swarm intelligence algorithms, which were inspired by the social behaviour of natural animals such as fish schooling and bird flocking, were developed because they do not require conventional mathematical assumptions and thus possess better global search abilities than the traditional optimization algorithms and have attracted more and more attention. These intelligent basedalgorithms are very suitable for continuous and discrete design variable problems such as ready-made structural members and have been vigorously applied to various structural design problems and obtained good results. This book gathers the authors’ latest research work related with particle swarm optimizer algorithm and group search optimizer algorithm as well as their application to structural optimal design. The readers can understand the full spectrum of the algorithms and apply the algorithms to their own research problems.
  civil engineering optimization problems: Structural Optimization Uri Kirsch, 2012-12-06 This book was developed while teaching a graduate course at several universities in the United States. Europe and Israel. during the last two decades. The purpose of the book is to introduce the fundamentals and applications of optimum structural design. Much work has been done in this area recently and many studies have been published. The book is an attempt to collect together selected topics of this literature and to present them in a unified approach. It meets the need for an introductory text covering the basic concepts of modem structural optimization. A previous book by the author on this subject (Optimum Structural Design. published by McGraw-Hill New York in 1981 and by Maruzen Tokyo in 1983). has been used extensively as a text in many universities throughout the world. The present book reflects the rapid progress and recent developments in this area. A major difficulty in studying structural optimization is that integration of concepts used in several areas. such as structural analysis. numerical optimization and engineering design. is necessary in order to solve a specific problem. To facilitate the study of these topics. the book discusses in detail alternative problem formulations. the fundamentals of different optimization methods and various considerations related to structural design. The advantages and the limitations of the presented approaches are illustrated by numerous examples.
  civil engineering optimization problems: Structural Design Optimization Considering Uncertainties Yannis Tsompanakis, Nikos D. Lagaros, Manolis Papadrakakis, 2008-02-07 Uncertainties play a dominant role in the design and optimization of structures and infrastructures. In optimum design of structural systems due to variations of the material, manufacturing variations, variations of the external loads and modelling uncertainty, the parameters of a structure, a structural system and its environment are not given, fixed coefficients, but random variables with a certain probability distribution. The increasing necessity to solve complex problems in Structural Optimization, Structural Reliability and Probabilistic Mechanics, requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest findings on structural optimization considering uncertainties. It contains selected contributions dealing with the use of probabilistic methods for the optimal design of different types of structures and various considerations of uncertainties. The first part is focused on reliability-based design optimization and the second part on robust design optimization. Comprising twenty-one, self-contained chapters by prominent authors in the field, it forms a complete collection of state-of-the-art theoretical advances and applications in the fields of structural optimization, structural reliability, and probabilistic computational mechanics. It is recommended to researchers, engineers, and students in civil, mechanical, naval and aerospace engineering and to professionals working on complicated costs-effective design problems.
  civil engineering optimization problems: Systems Analysis for Civil Engineers Paul J. Ossenbruggen, 1984-01-18 A systems analysis text which introduces fundamental methods of optimization, including graphical and numerical methods, and the principles of engineering economics to the planning, analysis, design, and management of civil engineering systems. Designed for undergraduates majoring in civil engineering. Includes practical problems.
  civil engineering optimization problems: Optimization in Practice with MATLAB Achille Messac, 2015-03-19 This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB® software.
  civil engineering optimization problems: Construction Scheduling, Cost Optimization and Management Hojjat Adeli, Asim Karim, 2001-01-25 Construction Scheduling, Cost Optimization and Management presents a general mathematical formula for the scheduling of construction projects. Using this formula, repetitive and non-repetitive tasks, work continuity considerations, multiple-crew strategies, and the effects of varying job conditions on the performance of a crew can be modelled. This book presents an entirely new approach to the construction scheduling problem. It provides a practical methodology which will be of great benefit to all those involved in construction scheduling and cost optimization, including construction engineers, highway engineers, transportation engineers, contractors and architects. It will also be useful for researchers, and graduates on courses in construction scheduling and planning.
  civil engineering optimization problems: Design and Optimization of Metal Structures J Farkas, K Jarmai, 2008-04-01 An industrial book that analyses various theoretical problems, optimizes numerical applications and addresses industrial problems such as belt-conveyor bridge, pipeline, wind turbine power, large-span suspended roof and offshore jacket member. Multi-storey frames and pressure vessel-supporting frames are discussed in detail. The book's emphasis is on economy and cost calculation, making it possible to compare costs and make significant savings in the design stages, by, for example, comparing the costs of stiffened and un-stiffened structural versions of plates and shells. In this respect, this book will be an invaluable aid for designers, students, researchers and manufacturers to find better, optimal, competitive structural solutions. - Emphasis is placed on economy and cost calculation, making it possible to compare costs and make significant savings in the design stages of metal structures - Optimizes numerical applications and analyses various theoretical and industrial problems, such as belt-conveyor bridge, pipeline, wind turbine power, large-span suspended roof and offshore jacket member - An invaluable aid for designers, students, researchers and manufacturers to find better, optimal, competitive structural solutions
  civil engineering optimization problems: Optimization in Civil & Environmental Engineering Zong Woo Geem, 2012
  civil engineering optimization problems: Problem Solving for Engineers David G. Carmichael, 2013-06-04 Whatever their discipline, engineers are routinely called upon to develop solutions to all kinds of problems. To do so effectively, they need a systematic and disciplined approach that considers a range of alternatives, taking into account all relevant factors, before selecting the best solution. In Problem Solving for Engineers, David Carmichael demonstrates just such an approach involving problem definition, generation of alternative solutions, and, ultimately, the analysis and selection of a preferred solution. David Carmichael introduces the fundamental concepts needed to think systematically and undertake methodical problem solving. He argues that the most rational way to develop a framework for problem solving is by using a systems studies viewpoint. He then outlines systems methodology, modeling, and the various configurations for analysis, synthesis, and investigation. Building on this, the book details a systematic process for problem solving and demonstrates how problem solving and decision making lie within a systems synthesis configuration. Carefully designed as a self-learning resource, the book contains exercises throughout that reinforce the material and encourage readers to think and apply the concepts. It covers decision making in the presence of uncertainty and multiple criteria, including that involving sustainability with its blend of economic, social, and environmental considerations. It also characterizes and tackles the specific problem solving of management, planning, and design. The book provides, for the first time, a rational framework for problem solving with an engineering orientation.
  civil engineering optimization problems: An Introduction to Structural Optimization Peter W. Christensen, Anders Klarbring, 2008-10-20 This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying—frequently very many— variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.
  civil engineering optimization problems: Probabilistic Machine Learning for Civil Engineers James-A. Goulet, 2020-04-14 An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.
  civil engineering optimization problems: Engineering Optimization G. V. Reklaitis, A. Ravindran, K. M. Ragsdell, 1981
  civil engineering optimization problems: Evolutionary Algorithms and Metaheuristics in Civil Engineering and Construction Management Jorge Magalhães-Mendes, David Greiner, 2015-07-07 This book focuses on civil and structural engineering and construction management applications. The contributions constitute modified, extended and improved versions of research presented at the minisymposium organized by the editors at the ECCOMAS conference on this topic in Barcelona 2014.
  civil engineering optimization problems: Control, Optimization, and Smart Structures Hojjat Adeli, Amgad Saleh, 1999-05-03 A futuristic guide to smart structure technology Through the use of active controllers, a structure can modify its behavior during dynamic loading such as impact, wind, or earthquake loading. Such structures with self-modification capability are called adaptive or smart structures. Smart structure technology prevents loss of life and damage to structures during natural disasters. This cross-disciplinary book features computational models and algorithms for active control of a new generation of large adaptive structures subjected to various types of dynamic loading. An important focus of the book is the optimization of both the structure and control systems in order to minimize costs.
  civil engineering optimization problems: Introduction to Civil Engineering Systems Samuel Labi, 2014-04-07 This book presents an integrated systems approach to the evaluation, analysis, design, and maintenance of civil engineering systems. Addressing recent concerns about the world's aging civil infrastructure and its environmental impact, the author makes the case for why any civil infrastructure should be seen as part of a larger whole. He walks readers through all phases of a civil project, from feasibility assessment to construction to operations, explaining how to evaluate tasks and challenges at each phase using a holistic approach. Unique coverage of ethics, legal issues, and management is also included.
  civil engineering optimization problems: Optimization and Artificial Intelligence in Civil and Structural Engineering B.H. Topping, 1992-09-30 These volumes comprise the edited versions of the principal lectures and selected papers presented at the NATO Advanced Study Institute on Optimization and Decision Support Systems in Civil Engineering. The Institute was held in the Department of Civil Engineering at Heriot-Watt University, Edinburgh, United Kingdom, from June 25th to July 6th 1989. Both volumes reflect the full range of the systems approach to civil and structural engineering problems including: structural analysis and design; water resources engineering; geotechnical engineering; transportation and environmental engineering. This system approach, discussed in the first volume, includes a number of common threads: mathematical programming, game theory, utility theory, statistical decision theory, networks, and fuzzy logic. A most important feature of this volume is the examination of similar representations of different civil engineering problems and their solutions using general systems approaches. The decision support aspect of the institute is reflected in the second volume by the knowledge-based systems and their artificial intelligence approach. Papers discussing many aspects of knowledge-based systems in civil and structural engineering are included in the second volume.
  civil engineering optimization problems: MATLAB for Civil Engineers Dimitrios Sargiotis, 2025-05-21 This book is a comprehensive and rigorous guide to MATLAB for Civil Engineers, bridging the critical gap between theoretical mathematics and practical engineering solutions. With an approachable introduction for students and deep insights for experienced professionals, it caters to a wide range of audiences across civil engineering disciplines—environmental, structural, geotechnical, and transportation engineering. Structured to guide readers progressively, the book begins with foundational MATLAB operations such as syntax and matrix manipulation, then advances into sophisticated engineering applications, including optimization, numerical methods, and data visualization. It covers essential MATLAB functionalities, offering detailed instruction on computation, visualization, and programming, all within the context of solving real-world engineering challenges. What sets this book apart is its hands-on approach. Readers are immersed in practical learning through real-world case studies, examples, and step-by-step exercises designed to reinforce key concepts. The text provides both academic and professional readers with the tools they need to model, analyze, and optimize engineering systems using MATLAB, ensuring they are equipped to handle both routine and complex engineering challenges with confidence. By the end, readers will not only master MATLAB's powerful tools but will also understand how to apply them directly to critical civil engineering problems, positioning themselves to innovate and lead in a field where computational proficiency is increasingly essential.
  civil engineering optimization problems: Jaya: An Advanced Optimization Algorithm and its Engineering Applications Ravipudi Venkata Rao, 2018-06-09 This book introduces readers to the “Jaya” algorithm, an advanced optimization technique that can be applied to many physical and engineering systems. It describes the algorithm, discusses its differences with other advanced optimization techniques, and examines the applications of versions of the algorithm in mechanical, thermal, manufacturing, electrical, computer, civil and structural engineering. In real complex optimization problems, the number of parameters to be optimized can be very large and their influence on the goal function can be very complicated and nonlinear in character. Such problems cannot be solved using classical methods and advanced optimization methods need to be applied. The Jaya algorithm is an algorithm-specific parameter-less algorithm that builds on other advanced optimization techniques. The application of Jaya in several engineering disciplines is critically assessed and its success compared with other complex optimization techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and other recently developed algorithms.
  civil engineering optimization problems: Optimization Concepts and Applications in Engineering Ashok D. Belegundu, Tirupathi R. Chandrupatla, 2011-03-28 In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.
  civil engineering optimization problems: Optimization and Artificial Intelligence in Civil and Structural Engineering B.H. Topping, 1992-09-30 This volume and its companion volume includes the edited versions of the principal lectures and selected papers presented at the NATO Advanced Study Institute on Optimization and Decision Support Systems in Civil Engineering. The Institute was held in the Department of Civil Engineering at Heriot-Watt University, Edinburgh from June 25th to July 6th 1989 and was attended by eighty participants from Universities and Research Institutes around the world. A number of practising civil and structural engineers also attended. The lectures and papers have been divided into two volumes to reflect the dual themes of the Institute namely Optimization and Decision Support Systems in Civil Engineering. Planning for this ASI commenced in late 1986 when Andrew Templeman and I discussed developments in the use of the systems approach in civil engineering. A little later it became clear that much of this approach could be realised through the use of knowledge-based systems and artificial intelligence techniques. Both Don Grierson and John Gero indicated at an early stage how important it would be to include knowledge-based systems within the scope of the Institute. The title of the Institute could have been: 'Civil Engineering Systems' as this would have reflected the range of systems applications to civil engineering problems considered by the Institute. These volumes therefore reflect the full range of these problems including: structural analysis and design; water resources engineering; geotechnical engineering; transportation and environmental engineering.
如何知道一个期刊是不是sci? - 知乎
Master Journal List在这个网站能搜到的就是吗?我在web of knowledge 上能搜到文章的杂志就是sci吗?

有问题,就会有答案 - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

如何评价期刊nature water? - 知乎
We publish in the natural sciences (primarily Earth and environmental science), in engineering (including environmental, civil, chemical and materials engineering), and in the social sciences …

在一所大学里面 faculty, department, school 之间是什么关系?
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

参考文献为外文文献时应该采用什么格式啊? - 知乎
Winfield,Richard Dien.Law in Civil Society.Madison:U of Wisconsin P,1995. CMS格式. CMS格式,又叫芝加哥论文格式,全称The Chicago Manual of Style,源于芝加哥大学出版社在1906年 …

.dbf .prj .sbn .sbx .shp .xml .shx文件是什么文件格式,如何打开?
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

如何做好一次表现高分的 Presentation? - 知乎
I want to confine my talk to the latest developments in civil engineering. Today, I am going to give a talk on the application of computers in medicine. My topic today will deal with the …

什么是 BIM,它的具体作用是什么? - 知乎
举例来说,土方工程使用civil 3d就是具体部分,使用revit来建立整栋大楼的三维模型等就是单体建筑;CIM(关于CIM现在有两种说法,一种是City Intelligent Model,城市智慧模型,这种说法 …

如何知道一个期刊是不是sci? - 知乎
Master Journal List在这个网站能搜到的就是吗?我在web of knowledge 上能搜到文章的杂志就是sci吗?

有问题,就会有答案 - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

如何评价期刊nature water? - 知乎
We publish in the natural sciences (primarily Earth and environmental science), in engineering (including environmental, civil, chemical and materials engineering), and in the social sciences …

在一所大学里面 faculty, department, school 之间是什么关系?
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

参考文献为外文文献时应该采用什么格式啊? - 知乎
Winfield,Richard Dien.Law in Civil Society.Madison:U of Wisconsin P,1995. CMS格式. CMS格式,又叫芝加哥论文格式,全称The Chicago Manual of Style,源于芝加哥大学出版社在1906年 …

.dbf .prj .sbn .sbx .shp .xml .shx文件是什么文件格式,如何打开?
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …

如何做好一次表现高分的 Presentation? - 知乎
I want to confine my talk to the latest developments in civil engineering. Today, I am going to give a talk on the application of computers in medicine. My topic today will deal with the …

什么是 BIM,它的具体作用是什么? - 知乎
举例来说,土方工程使用civil 3d就是具体部分,使用revit来建立整栋大楼的三维模型等就是单体建筑;CIM(关于CIM现在有两种说法,一种是City Intelligent Model,城市智慧模型,这种说法 …