Advertisement
boolean algebra in discrete mathematics: Boolean Algebra and Its Applications J. Eldon Whitesitt, 2012-05-24 Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition. |
boolean algebra in discrete mathematics: Discrete Mathematics with Applications Thomas Koshy, 2004-01-19 This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects* Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises* Features interesting anecdotes and biographies of 60 mathematicians and computer scientists* Instructor's Manual available for adopters* Student Solutions Manual available separately for purchase (ISBN: 0124211828) |
boolean algebra in discrete mathematics: Introduction to Discrete Mathematics via Logic and Proof Calvin Jongsma, 2019-11-08 This textbook introduces discrete mathematics by emphasizing the importance of reading and writing proofs. Because it begins by carefully establishing a familiarity with mathematical logic and proof, this approach suits not only a discrete mathematics course, but can also function as a transition to proof. Its unique, deductive perspective on mathematical logic provides students with the tools to more deeply understand mathematical methodology—an approach that the author has successfully classroom tested for decades. Chapters are helpfully organized so that, as they escalate in complexity, their underlying connections are easily identifiable. Mathematical logic and proofs are first introduced before moving onto more complex topics in discrete mathematics. Some of these topics include: Mathematical and structural induction Set theory Combinatorics Functions, relations, and ordered sets Boolean algebra and Boolean functions Graph theory Introduction to Discrete Mathematics via Logic and Proof will suit intermediate undergraduates majoring in mathematics, computer science, engineering, and related subjects with no formal prerequisites beyond a background in secondary mathematics. |
boolean algebra in discrete mathematics: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''-- |
boolean algebra in discrete mathematics: Discrete Mathematics Rowan Garnier, John Taylor, 2020-10-29 In a comprehensive yet easy-to-follow manner, Discrete Mathematics for New Technology follows the progression from the basic mathematical concepts covered by the GCSE in the UK and by high-school algebra in the USA to the more sophisticated mathematical concepts examined in the latter stages of the book. The book punctuates the rigorous treatment of theory with frequent uses of pertinent examples and exercises, enabling readers to achieve a feel for the subject at hand. The exercise hints and solutions are provided at the end of the book. Topics covered include logic and the nature of mathematical proof, set theory, relations and functions, matrices and systems of linear equations, algebraic structures, Boolean algebras, and a thorough treatise on graph theory. Although aimed primarily at computer science students, the structured development of the mathematics enables this text to be used by undergraduate mathematicians, scientists, and others who require an understanding of discrete mathematics. |
boolean algebra in discrete mathematics: Discrete Mathematics James L. Hein, 2003 Winner at the 46th Annual New England Book Show (2003) in the College Covers & Jackets category This introduction to discrete mathematics prepares future computer scientists, engineers, and mathematicians for success by providing extensive and concentrated coverage of logic, functions, algorithmic analysis, and algebraic structures. Discrete Mathematics, Second Edition illustrates the relationships between key concepts through its thematic organization and provides a seamless transition between subjects. Distinct for the depth with which it covers logic, this text emphasizes problem solving and the application of theory as it carefully guides the reader from basic to more complex topics. Discrete Mathematics is an ideal resource for discovering the fundamentals of discrete math. Discrete Mathematics, Second Edition is designed for an introductory course in discrete mathematics for the prospective computer scientist, applied mathematician, or engineer who wants to learn how the ideas apply to computer sciences.The choice of topics-and the breadth of coverage-reflects the desire to provide students with the foundations needed to successfully complete courses at the upper division level in undergraduate computer science courses. This book differs in several ways from current books about discrete mathematics.It presents an elementary and unified introduction to a collection of topics that has not been available in a single source.A major feature of the book is the unification of the material so that it does not fragment into a collection of seemingly unrelated ideas. |
boolean algebra in discrete mathematics: A Logical Approach to Discrete Math David Gries, Fred B. Schneider, 2013-03-14 This text attempts to change the way we teach logic to beginning students. Instead of teaching logic as a subject in isolation, we regard it as a basic tool and show how to use it. We strive to give students a skill in the propo sitional and predicate calculi and then to exercise that skill thoroughly in applications that arise in computer science and discrete mathematics. We are not logicians, but programming methodologists, and this text reflects that perspective. We are among the first generation of scientists who are more interested in using logic than in studying it. With this text, we hope to empower further generations of computer scientists and math ematicians to become serious users of logic. Logic is the glue Logic is the glue that binds together methods of reasoning, in all domains. The traditional proof methods -for example, proof by assumption, con tradiction, mutual implication, and induction- have their basis in formal logic. Thus, whether proofs are to be presented formally or informally, a study of logic can provide understanding. |
boolean algebra in discrete mathematics: Discrete Mathematics with Proof Eric Gossett, 2009-06-22 A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics. |
boolean algebra in discrete mathematics: Discrete Mathematics Babu Ram, 2012 Discrete Mathematics will be of use to any undergraduate as well as post graduate courses in Computer Science and Mathematics. The syllabi of all these courses have been studied in depth and utmost care has been taken to ensure that all the essential topics in discrete structures are adequately emphasized. The book will enable the students to develop the requisite computational skills needed in software engineering. |
boolean algebra in discrete mathematics: ADVANCED DISCRETE MATHEMATICS UDAY SINGH RAJPUT, 2012-05-26 Written in an accessible style, this text provides a complete coverage of discrete mathematics and its applications at an appropriate level of rigour. The book discusses algebraic structures, mathematical logic, lattices, Boolean algebra, graph theory, automata theory, grammars and recurrence relations. It covers the important topics such as coding theory, Dijkstra’s shortest path algorithm, reverse polish notation, Warshall’s algorithm, Menger’s theorem, Turing machine, and LR(k) parsers, which form a part of the fundamental applications of discrete mathematics in computer science. In addition, Pigeonhole principle, ring homomorphism, field and integral domain, trees, network flows, languages, and recurrence relations. The text is supported with a large number of examples, worked-out problems and diagrams that help students understand the theoretical explanations. The book is intended as a text for postgraduate students of mathematics, computer science, and computer applications. In addition, it will be extremely useful for the undergraduate students of computer science and engineering. |
boolean algebra in discrete mathematics: Foundations of Discrete Mathematics K. D. Joshi, 1989 This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book. |
boolean algebra in discrete mathematics: Applied Discrete Structures - Part 2- Algebraic Structures Ken Levasseur, Al Doerr, 2017-05-15 Applied Discrete Structures, Part II - Algebraic Structures, is an introduction to groups, monoids, vector spaces, lattices, boolean algebras, rings and fields. It corresponds with the content of Discrete Structures II at UMass Lowell, which is a required course for students in Computer Science. It presumes background contained in Part I - Fundamentals. Applied Discrete Structures has been approved by the American Institute of Mathematics as part of their Open Textbook Initiative. For more information on open textbooks, visit http: //www.aimath.org/textbooks/. This version was created using Mathbook XML (https: //mathbook.pugetsound.edu/) Al Doerr is Emeritus Professor of Mathematical Sciences at UMass Lowell. His interests include abstract algebra and discrete mathematics. Ken Levasseur is a Professor of Mathematical Sciences at UMass Lowell. His interests include discrete mathematics and abstract algebra, and their implementation using computer algebra systems. |
boolean algebra in discrete mathematics: Problems and Exercises in Discrete Mathematics G.P. Gavrilov, A.A. Sapozhenko, 2013-03-09 Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers. |
boolean algebra in discrete mathematics: Discrete Mathematics for Computing Peter Grossman, 2002-01 Written with a clear and informal style Discrete Mathematics for Computing is aimed at first year undergraduate computing students with very little mathematical background. It is a low-level introductory text which takes the topics at a gentle pace, covering all the essential material that forms the background for studies in computing and information systems. This edition includes new sections on proof methods and recurrences, and the examples have been updated throughout to reflect the changes in computing since the first edition. |
boolean algebra in discrete mathematics: Discrete Mathematics for Computer Science John Schlipf, Sue Whitesides, Gary Haggard, 2020-09-22 Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented. |
boolean algebra in discrete mathematics: Discrete Mathematics Using a Computer Cordelia Hall, John O'Donnell, 2000 This volume offers a new, hands-on approach to teaching Discrete Mathematics. A simple functional language is used to allow students to experiment with mathematical notations which are traditionally difficult to pick up. This practical approach provides students with instant feedback and also allows lecturers to monitor progress easily. All the material needed to use the book will be available via ftp (the software is freely available and runs on Mac, PC and Unix platforms), including a special module which implements the concepts to be learned.No prior knowledge of Functional Programming is required: apart from List Comprehension (which is comprehensively covered in the text) everything the students need is either provided for them or can be picked up easily as they go along. An Instructors Guide will also be available on the WWW to help lecturers adapt existing courses. |
boolean algebra in discrete mathematics: Discrete Mathematics for Computer Science Jon Pierre Fortney, 2020-12-23 Discrete Mathematics for Computer Science: An Example-Based Introduction is intended for a first- or second-year discrete mathematics course for computer science majors. It covers many important mathematical topics essential for future computer science majors, such as algorithms, number representations, logic, set theory, Boolean algebra, functions, combinatorics, algorithmic complexity, graphs, and trees. Features Designed to be especially useful for courses at the community-college level Ideal as a first- or second-year textbook for computer science majors, or as a general introduction to discrete mathematics Written to be accessible to those with a limited mathematics background, and to aid with the transition to abstract thinking Filled with over 200 worked examples, boxed for easy reference, and over 200 practice problems with answers Contains approximately 40 simple algorithms to aid students in becoming proficient with algorithm control structures and pseudocode Includes an appendix on basic circuit design which provides a real-world motivational example for computer science majors by drawing on multiple topics covered in the book to design a circuit that adds two eight-digit binary numbers Jon Pierre Fortney graduated from the University of Pennsylvania in 1996 with a BA in Mathematics and Actuarial Science and a BSE in Chemical Engineering. Prior to returning to graduate school, he worked as both an environmental engineer and as an actuarial analyst. He graduated from Arizona State University in 2008 with a PhD in Mathematics, specializing in Geometric Mechanics. Since 2012, he has worked at Zayed University in Dubai. This is his second mathematics textbook. |
boolean algebra in discrete mathematics: Boolean Reasoning Frank Markham Brown, 2012-02-10 Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition. |
boolean algebra in discrete mathematics: A Beginner’s Guide to Discrete Mathematics W. D. Wallis, 2003 This introduction to discrete mathematics is aimed primarily at undergraduates in mathematics and computer science at the freshmen and sophomore levels. The text has a distinctly applied orientation and begins with a survey of number systems and elementary set theory. Included are discussions of scientific notation and the representation of numbers in computers. Lists are presented as an example of data structures. An introduction to counting includes the Binomial Theorem and mathematical induction, which serves as a starting point for a brief study of recursion. The basics of probability theory are then covered.Graph study is discussed, including Euler and Hamilton cycles and trees. This is a vehicle for some easy proofs, as well as serving as another example of a data structure. Matrices and vectors are then defined. The book concludes with an introduction to cryptography, including the RSA cryptosystem, together with the necessary elementary number theory, e.g., Euclidean algorithm, Fermat's Little Theorem.Good examples occur throughout. At the end of every section there are two problem sets of equal difficulty. However, solutions are only given to the first set. References and index conclude the work.A math course at the college level is required to handle this text. College algebra would be the most helpful. |
boolean algebra in discrete mathematics: Introductory Discrete Mathematics V. K. Balakrishnan, 1996-01-01 This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition. |
boolean algebra in discrete mathematics: Lattice Functions and Equations Sergiu Rudeanu, 2012-12-06 One of the chief aims of this self-contained monograph is to survey recent developments of Boolean functions and equations, as well as lattice functions and equations in more general classes of lattices. Lattice (Boolean) functions are algebraic functions defined over an arbitrary lattice (Boolean algebra), while lattice (Boolean) equations are equations expressed in terms of lattice (Boolean) functions. Special attention is also paid to consistency conditions and reproductive general solutions. Applications refer to graph theory, automata theory, synthesis of circuits, fault detection, databases, marketing and others. Lattice Functions and Equations updates and extends the author's previous monograph - Boolean Functions and Equations. |
boolean algebra in discrete mathematics: Discrete Mathematics Iyengar, N.Ch. S.N./Chandrasekaran V.M./Venkalesh K.A. & Arunachalam P.S., 2003-11-01 Student-friendly and comprehensive, this book covers topics such as Mathematical Logic, Set Theory, Algebraic Systems, Boolean Algebra and Graph Theory that are essential to the study of Computer Science in great detail. |
boolean algebra in discrete mathematics: Modal Logic for Philosophers James W. Garson, 2006-08-14 This 2006 book provides an accessible, yet technically sound treatment of modal logic and its philosophical applications. |
boolean algebra in discrete mathematics: Discrete Mathematics Richard Johnsonbaugh, 2009 For a one- or two-term introductory course in discrete mathematics. Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization. |
boolean algebra in discrete mathematics: Discrete Mathematics , |
boolean algebra in discrete mathematics: A First Course in Discrete Mathematics John C. Molluzzo, Fred Buckley, 1997 This highly regarded work fills the need for a treatment of elementary discrete mathematics that provides a core of mathematical terminology and concepts as well as emphasizes computer applications. Includes numerous elementary applications to computing and examples with solutions. |
boolean algebra in discrete mathematics: Analysis of Boolean Functions Ryan O'Donnell, 2014-06-05 This graduate-level text gives a thorough overview of the analysis of Boolean functions, beginning with the most basic definitions and proceeding to advanced topics. |
boolean algebra in discrete mathematics: Discrete Mathematics with Applications William Barnier, Jean B. Chan, 1989 Designed to provide a strong mathematics background for computer science, engineering, and mathematics students. Topics in the text are drawn from logic, Boolean algebra, combinatorics, automata, and graph theory. A chapter on automata theory and formal languages is included along with programming notes using Pascal language constructions to show how programming and mathematics are related. Logic is introduced briefly in chapter one and then expanded upon in chapter four. |
boolean algebra in discrete mathematics: Advance Discrete Structure C. B. Gupta, Sandeep Kumar, S. R. Singh, 2011-09 Advance discrete structure is a compulsory paper in most of computing programs (M.Tech, MCA, M.Sc, B.Tech, BCA, B. Sc etc.). This book has been written to fulfill the requirements of graduate and post-graduate students pursuing courses in mathematics as w |
boolean algebra in discrete mathematics: Discrete Mathematics Kenneth A. Ross, Charles R. B. Wright, 1988 |
boolean algebra in discrete mathematics: The Mathematical Analysis of Logic George Boole, 1847 The Mathematical Analysis of Logic by George Boole, first published in 1948, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it. |
boolean algebra in discrete mathematics: Boolean Functions Yves Crama, Peter L. Hammer, 2011-05-16 Written by prominent experts in the field, this monograph provides the first comprehensive, unified presentation of the structural, algorithmic and applied aspects of the theory of Boolean functions. The book focuses on algebraic representations of Boolean functions, especially disjunctive and conjunctive normal form representations. This framework looks at the fundamental elements of the theory (Boolean equations and satisfiability problems, prime implicants and associated short representations, dualization), an in-depth study of special classes of Boolean functions (quadratic, Horn, shellable, regular, threshold, read-once functions and their characterization by functional equations) and two fruitful generalizations of the concept of Boolean functions (partially defined functions and pseudo-Boolean functions). Several topics are presented here in book form for the first time. Because of the depth and breadth and its emphasis on algorithms and applications, this monograph will have special appeal for researchers and graduate students in discrete mathematics, operations research, computer science, engineering and economics. |
boolean algebra in discrete mathematics: Practical Discrete Mathematics Ryan T. White, Archana Tikayat Ray, 2021-02-22 A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book. |
boolean algebra in discrete mathematics: Discrete Mathematical Structures B. V. Senthil Kumar, Hemen Dutta, 2019-07-08 This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures |
boolean algebra in discrete mathematics: Schaum's Outline of Boolean Algebra and Switching Circuits Elliott Mendelson, 1970-06-22 Confusing Textbooks? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved. |
boolean algebra in discrete mathematics: Discrete Mathematics and Graph Theory K. Erciyes, 2021-01-28 This textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications. |
boolean algebra in discrete mathematics: Discrete Structures with Contemporary Applications Alexander Stanoyevitch, 2024-10-14 Reflecting many of the recent advances and trends in this area, this classroom-tested text covers the core topics in discrete structures as outlined by the ACM and explores an assortment of novel applications, including simulations, genetic algorithms, network flows, probabilistic primality tests, public key cryptography, and coding theory. It p |
boolean algebra in discrete mathematics: Discrete Mathematics Rowan Garnier, John Taylor, 2009-11-09 Taking an approach to the subject that is suitable for a broad readership, Discrete Mathematics: Proofs, Structures, and Applications, Third Edition provides a rigorous yet accessible exposition of discrete mathematics, including the core mathematical foundation of computer science. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined later in the book. This edition preserves the philosophy of its predecessors while updating and revising some of the content. New to the Third Edition In the expanded first chapter, the text includes a new section on the formal proof of the validity of arguments in propositional logic before moving on to predicate logic. This edition also contains a new chapter on elementary number theory and congruences. This chapter explores groups that arise in modular arithmetic and RSA encryption, a widely used public key encryption scheme that enables practical and secure means of encrypting data. This third edition also offers a detailed solutions manual for qualifying instructors. Exploring the relationship between mathematics and computer science, this text continues to provide a secure grounding in the theory of discrete mathematics and to augment the theoretical foundation with salient applications. It is designed to help readers develop the rigorous logical thinking required to adapt to the demands of the ever-evolving discipline of computer science. |
boolean algebra in discrete mathematics: Discrete Mathematics for New Technology, Second Edition Rowan Garnier, John Taylor, 2001-12-01 Updated and expanded, Discrete Mathematics for New Technology, Second Edition provides a sympathetic and accessible introduction to discrete mathematics, including the core mathematics requirements for undergraduate computer science students. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined in the latter stages of the book. Although the theory is presented rigorously, it is illustrated by the frequent use of pertinent examples and is further reinforced with exercises-some with hints and solutions-to enable the reader to achieve a comprehensive understanding of the subject at hand. New to the Second Edition Numerous new examples and exercises designed to illustrate and reinforce mathematical concepts and facilitate students' progression through the topics New sections on typed set theory and an introduction to formal specification Presenting material that is at the foundations of mathematics itself, Discrete Mathematics for New Technology is a readable, friendly textbook designed for non-mathematicians as well as for computing and mathematics undergraduates alike. |
Boolean algebra - Wikipedia
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and …
What is a Boolean? - Computer Hope
Jun 1, 2025 · In computer science, a boolean or bool is a data type with two possible values: true or false. It is named after the English mathematician and logician George Boole, whose …
Boolean Algebra - GeeksforGeeks
Apr 15, 2025 · Boolean Algebra is a branch of algebra that deals with boolean values—true and false. It is fundamental to digital logic design and computer science, providing a mathematical …
How Boolean Logic Works - HowStuffWorks
May 22, 2024 · A subsection of mathematical logic, Boolean logic deals with operations involving the two Boolean values: true and false. Although Boolean logic dates back to the mid-19th …
What Boolean Logic Is & How It’s Used In Programming
Mar 21, 2022 · Boolean logic is a type of algebra in which results are calculated as either TRUE or FALSE (known as truth values or truth variables). Instead of using arithmetic operators like …
What is Boolean in computing? – TechTarget Definition
Nov 7, 2022 · In computing, the term Boolean means a result that can only have one of two possible values: true or false. Boolean logic takes two statements or expressions and applies …
BOOLEAN Definition & Meaning - Merriam-Webster
The meaning of BOOLEAN is of, relating to, or being a logical combinatorial system (such as Boolean algebra) that represents symbolically relationships (such as those implied by the …
Boolean Algebra - Math is Fun
Boolean Algebra is about true and false and logic. The simplest thing we can do is to "not" or "invert": We can write this down in a "truth table" (we use T for true and F for false): We can …
Boolean Algebra Solver - Boolean Expression Calculator
Boolean Algebra expression simplifier & solver. Detailed steps, Logic circuits, KMap, Truth table, & Quizes. All in one boolean expression calculator. Online tool. Learn boolean algebra.
Boolean - Wikipedia
Any kind of logic, function, expression, or theory based on the work of George Boole is considered Boolean. Related to this, "Boolean" may refer to: Boolean circuit, a mathematical model for …
Boolean algebra - Wikipedia
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and …
What is a Boolean? - Computer Hope
Jun 1, 2025 · In computer science, a boolean or bool is a data type with two possible values: true or false. It is named after the English mathematician and logician George Boole, whose …
Boolean Algebra - GeeksforGeeks
Apr 15, 2025 · Boolean Algebra is a branch of algebra that deals with boolean values—true and false. It is fundamental to digital logic design and computer science, providing a mathematical …
How Boolean Logic Works - HowStuffWorks
May 22, 2024 · A subsection of mathematical logic, Boolean logic deals with operations involving the two Boolean values: true and false. Although Boolean logic dates back to the mid-19th …
What Boolean Logic Is & How It’s Used In Programming
Mar 21, 2022 · Boolean logic is a type of algebra in which results are calculated as either TRUE or FALSE (known as truth values or truth variables). Instead of using arithmetic operators like …
What is Boolean in computing? – TechTarget Definition
Nov 7, 2022 · In computing, the term Boolean means a result that can only have one of two possible values: true or false. Boolean logic takes two statements or expressions and applies …
BOOLEAN Definition & Meaning - Merriam-Webster
The meaning of BOOLEAN is of, relating to, or being a logical combinatorial system (such as Boolean algebra) that represents symbolically relationships (such as those implied by the …
Boolean Algebra - Math is Fun
Boolean Algebra is about true and false and logic. The simplest thing we can do is to "not" or "invert": We can write this down in a "truth table" (we use T for true and F for false): We can …
Boolean Algebra Solver - Boolean Expression Calculator
Boolean Algebra expression simplifier & solver. Detailed steps, Logic circuits, KMap, Truth table, & Quizes. All in one boolean expression calculator. Online tool. Learn boolean algebra.
Boolean - Wikipedia
Any kind of logic, function, expression, or theory based on the work of George Boole is considered Boolean. Related to this, "Boolean" may refer to: Boolean circuit, a mathematical model for …