Biological Inorganic Chemistry Structure And Reactivity

Advertisement



  biological inorganic chemistry structure and reactivity: Biological Inorganic Chemistry Ivano Bertini, 2007 Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.
  biological inorganic chemistry structure and reactivity: Biological Inorganic Chemistry Robert R. Crichton, 2007-12-11 The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
  biological inorganic chemistry structure and reactivity: Practical Approaches to Biological Inorganic Chemistry Robert R. Crichton, Ricardo O. Louro, 2012-12-31 The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. - Many colour illustrations enable easier visualization of molecular mechanisms and structures - Worked examples and problems are included to illustrate and test the reader's understanding of each technique - Written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures
  biological inorganic chemistry structure and reactivity: Biological Inorganic Chemistry Ivano Bertini, Joan Selverstone Valentine, Edward I. Stiefel, Harry B. Gray, 2007 DSU Title III 2007-2012.
  biological inorganic chemistry structure and reactivity: Bioinorganic Chemistry Rosette M. Roat-Malone, 2007-10-05 An updated, practical guide to bioinorganic chemistry Bioinorganic Chemistry: A Short Course, Second Edition provides the fundamentals of inorganic chemistry and biochemistry relevant to understanding bioinorganic topics. Rather than striving to provide a broad overview of the whole, rapidly expanding field, this resource provides essential background material, followed by detailed information on selected topics. The goal is to give readers the background, tools, and skills to research and study bioinorganic topics of special interest to them. This extensively updated premier reference and text: Presents review chapters on the essentials of inorganic chemistry and biochemistry Includes up-to-date information on instrumental and analytical techniques and computer-aided modeling and visualization programs Familiarizes readers with the primary literature sources and online resources Includes detailed coverage of Group 1 and 2 metal ions, concentrating on biological molecules that feature sodium, potassium, magnesium, and calcium ions Describes proteins and enzymes with iron-containing porphyrin ligand systems-myoglobin, hemoglobin, and the ubiquitous cytochrome metalloenzymes-and the non-heme, iron-containing proteins aconitase and methane monooxygenase Appropriate for one-semester bioinorganic chemistry courses for chemistry, biochemistry, and biology majors, this text is ideal for upper-level undergraduate and beginning graduate students. It is also a valuable reference for practitioners and researchers who need a general introduction to bioinorganic chemistry, as well as chemists who want an accessible desk reference.
  biological inorganic chemistry structure and reactivity: Inorganic Chemistry J. E. Huheey, 1975
  biological inorganic chemistry structure and reactivity: Inorganic Chemistry Gary Wulfsberg, 2000-03-16 This is a textbook for advanced undergraduate inorganic chemistry courses, covering elementary inorganic reaction chemistry through to more advanced inorganic theories and topics. The approach integrates bioinorganic, environmental, geological and medicinal material into each chapter, and there is a refreshing empirical approach to problems in which the text emphasizes observations before moving onto theoretical models. There are worked examples and solutions in each chapter combined with chapter-ending study objectives, 40-70 exercises per chapter and experiments for discovery-based learning.
  biological inorganic chemistry structure and reactivity: Spin States in Biochemistry and Inorganic Chemistry Marcel Swart, Miquel Costas, 2015-09-17 It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.
  biological inorganic chemistry structure and reactivity: Descriptive Inorganic Chemistry James E. House, Kathleen A. House, 2010-09-22 Descriptive Inorganic Chemistry, Second Edition, covers the synthesis, reactions, and properties of elements and inorganic compounds for courses in descriptive inorganic chemistry. This updated version includes expanded coverage of chemical bonding and enhanced treatment of Buckminster Fullerenes, and incorporates new industrial applications matched to key topics in the text. It is suitable for the one-semester (ACS-recommended) course or as a supplement in general chemistry courses. Ideal for majors and non-majors, the book incorporates rich graphs and diagrams to enhance the content and maximize learning. - Includes expanded coverage of chemical bonding and enhanced treatment of Buckminster Fullerenes - Incorporates new industrial applications matched to key topics in the text
  biological inorganic chemistry structure and reactivity: Bioinorganic Chemistry Ram Charitra Maurya, 2021-09-07 The book includes several topics as per Universities curriculum of M.Sc. and M.Phil. course work in Chemistry. This covers different Physiological aspects of Bioinorganic Chemistry in terms of 4 Chapters with in-depth and up-to-date coverage. The book symmetrically presents (i) Coordination chemistry of chlorophylls/bacteriochlophylls and its functional aspects in photosynthesis, (ii) Complexes containing nitric oxide: Synthesis, reactivity, structure, bonding, and therapeutic aspects of nitric oxide releasing molecules (NORMS) in human beings and plants, (iv) Complexes containing carbon monoxide: Synthesis, reactivity, structure, bonding, and therapeutic aspects of carbon monoxide releasing molecules (CORMS) in human beings and plants, and (iv) Advantageous role of gaseous signaling molecule, H2S: Hydrogen sulphide and their respective donors, in ophthalmic diseases and physiological implications in plants. At the end, three relevant topics are included as appendices for updating students and faculty members.
  biological inorganic chemistry structure and reactivity: Inorganic Chemistry James E. House, 2012-12-31 Inorganic Chemistry, Second Edition, provides essential information for students of inorganic chemistry or for chemists pursuing self-study. The presentation of topics is made with an effort to be clear and concise so that the book is portable and user friendly. The text emphasizes fundamental principles—including molecular structure, acid-base chemistry, coordination chemistry, ligand field theory, and solid state chemistry. It is organized into five major themes (structure, condensed phases, solution chemistry, main group and coordination compounds) with several chapters in each. There is a logical progression from atomic structure to molecular structure to properties of substances based on molecular structures, to behavior of solids, etc. The textbook contains a balance of topics in theoretical and descriptive chemistry. For example, the hard-soft interaction principle is used to explain hydrogen bond strengths, strengths of acids and bases, stability of coordination compounds, etc. Discussion of elements begins with survey chapters focused on the main groups, while later chapters cover the elements in greater detail. Each chapter opens with narrative introductions and includes figures, tables, and end-of-chapter problem sets. This new edition features new and improved illustrations, including symmetry and 3D molecular orbital representations; expanded coverage of spectroscopy, instrumental techniques, organometallic and bio-inorganic chemistry; and more in-text worked-out examples to encourage active learning and to prepare students for their exams. This text is ideal for advanced undergraduate and graduate-level students enrolled in the Inorganic Chemistry course. This core course serves Chemistry and other science majors. The book may also be suitable for biochemistry, medicinal chemistry, and other professionals who wish to learn more about this subject area. - Concise coverage maximizes student understanding and minimizes the inclusion of details students are unlikely to use - Discussion of elements begins with survey chapters focused on the main groups, while later chapters cover the elements in greater detail - Each chapter opens with narrative introductions and includes figures, tables, and end-of-chapter problem sets
  biological inorganic chemistry structure and reactivity: Bioinorganic Chemistry of Copper K.D. Karlin, Z. Tyeklar, 2012-12-06 Bioinorganic Chemistry of Copper focuses on the vital role of copper ions in biology, especially as an essential metalloenzyme cofactor. The book is highly interdisciplinary in its approach--the outstanding list of contributors includes coordination chemists, biochemists, biophysicists, and molecular biologists. Chapters are grouped into major areas of research interest in inorganic copper chemistry, spectroscopy, oxygen chemistry, biochemistry, and molecular biology. The book also discusses basic research of great potential importance to pharmaceutical scientists. This book is based on the first Johns Hopkins University Copper Symposium, held in August 1992. Researchers in chemistry, biochemistry, molecular biology, and medicinal chemistry will find it to be an essential reference on its subject.
  biological inorganic chemistry structure and reactivity: Inorganic Chemistry William W. Porterfield, 2013-04-12 This is one of the few books available that uses unifying theoretical concepts to present inorganic chemistry at the advanced undergraduate and graduate levels--most texts are organized around the periodic table, while this one is structured after bonding models, structure types, and reaction patterns. But the real strength of Porterfield's Second Edition is its clear presentation of ample background description, especially in recent areas of development such as cluster molecules, industrial catalysis, and bio-inorganic chemistry. This information will enable students to understand most current journals, empowering them to stay abreast of the latest advances in the field. Specific improvements of the Second Edition include new chapters on materials-science applications and bioinorganic chemistry, an extended discussion of transition-metal applications (including cuprate superconductors), and extended Tanabe-Sugano diagrams. - Extended treatment of inorganic materials science--ceramics, refractories, magnetic materials, superconductors--in the context of solid-state chemistry - Extended coverage of biological systems and their chemical and physiological consequences--02 metabolism, N2 fixation, muscle action, iron storage, cisplatin and nucleic acid structural probes, and photosynthesis - Unusual structures and species--silatranes, metallacarboranes, alkalides and electrides, vapor-deposition species, proton and hybrid sponges, massive transition-metal clusters, and agostic ligands - Thorough examination of industrial processes using organometallic catalysts and their mechanisms - Entropy-driven reactions - Complete discussion of inorganic photochemistry
  biological inorganic chemistry structure and reactivity: Experimental and Theoretical Approaches to Actinide Chemistry John K. Gibson, Wibe A. de Jong, 2018-03-19 A review of contemporary actinide research that focuses on new advances in experiment and theory, and the interplay between these two realms Experimental and Theoretical Approaches to Actinide Chemistry offers a comprehensive review of the key aspects of actinide research. Written by noted experts in the field, the text includes information on new advances in experiment and theory and reveals the interplay between these two realms. The authors offer a multidisciplinary and multimodal approach to the nature of actinide chemistry, and explore the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry. The text covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques. The authors provide contemporary overviews of each topic area presented and describe the current and anticipated experimental approaches for the field, as well as the current and future computational chemistry and materials techniques. In addition, the authors explore the combination of experiment and theory. This important resource: Provides an essential resource the reviews the key aspects of contemporary actinide research Includes information on new advances in experiment and theory, and the interplay between the two Covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques Focuses on the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry Written for academics, students, professionals and researchers, this vital text contains a thorough review of the key aspects of actinide research and explores the most recent advances in experiment and theory.
  biological inorganic chemistry structure and reactivity: Metal Ions in Biochemistry Pabitra Krishna Bhattacharya, Prakash B. Samnani, 2020-12-13 The second edition of Metal Ions in Biochemistry deals with the multidisciplinary subject of bio-inorganic chemistry, encompassing the disciplines of inorganic chemistry, biochemistry and medicine. The book deals with the role of metal ions in biochemistry, emphasising that biochemistry is mainly the chemistry of metal-biochemical complexes. Hence, the book starts with the structures of biochemicals and the identification of their metal binding sites. Thermodynamic and kinetic properties of the complexes are explained from the point of view of the nature of metal-ligand bonds. Various catalytic and structural roles of metal ions in biochemicals are discussed in detail. Features The role of Na+ and K+ in brain chemistry. The role of zinc insulin in glucose metabolism and its enhancement by vanadium and chromium compounds. Discussion of the role of zinc signals, zinc fingers and cascade effect in biochemistry. Haemoglobin synthesis and the role of vitamin B12 in it. The role of lanthanides in biochemical systems. A detailed discussion of the role of non-metals in biochemistry, a topic missing in most of the books on bio-inorganic chemistry. The study of bio-inorganic chemistry makes biochemists rethink the mechanistic pathways of biochemical reactions mediated by metal ions. There is a realisation of the role of metal complexes and inorganic ions as therapeutics such as iron in leukaemia, thalassemia and sickle cell anaemia, iodine in hypothyroidism and zinc, vanadium and chromium in glucose metabolism. The most recent realisation is of the use of zinc in the prevention and treatment of COVID-19.
  biological inorganic chemistry structure and reactivity: Principles of Bioinorganic Chemistry Stephen J. Lippard, Jeremy Mark Berg, 1994 The use of unnatural metals - which have been introduced into human biology as diagnostic probes and drugs - is another active area of tremendous medical significance.
  biological inorganic chemistry structure and reactivity: General, Organic, and Biological Chemistry Dorothy M. Feigl, John William Hill, 1983
  biological inorganic chemistry structure and reactivity: Inorganic and Bio-Inorganic Chemistry - Volume II Ivano Bertini, 2009-02-10 Inorganic and Bio-Inorganic Chemistry is the component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Inorganic and Bio-Inorganic Chemistry in the Encyclopedia of Chemical Sciences, Engineering and Technology Resources deals with the discipline which studies the chemistry of the elements of the periodic table. It covers the following topics: From simple to complex compounds; Chemistry of metals; Inorganic synthesis; Radicals reactions with metal complexes in aqueous solutions; Magnetic and optical properties; Inorganometallic chemistry; High temperature materials and solid state chemistry; Inorganic biochemistry; Inorganic reaction mechanisms;Homogeneous and heterogeneous catalysis; Cluster and polynuclear compounds; Structure and bonding in inorganic chemistry; Synthesis and spectroscopy of transition metal complexes; Nanosystems;Computational inorganic chemistry; Energy and inorganic chemistry. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
  biological inorganic chemistry structure and reactivity: Molybdenum and Tungsten Enzymes Russ Hille, Carola Schulzke, Martin L Kirk, 2016-10-10 There has been enormous progress in our understanding of molybdenum and tungsten enzymes and relevant inorganic complexes of molybdenum and tungsten over the past twenty years. This set of three books provides a timely and comprehensive overview of the field and documents the latest research. Building on the first volume that focussed on biochemistry aspects, the second volume in the set focusses on the inorganic complexes that model the structures and reactivity of the active sites of each major group of molybdenum and tungsten enzymes. Special attention is given to synthetic strategies, reaction mechanism and chemical kinetics of these systems. The introductory chapter provides a useful overview and places the topic of the book into a wider context. This text will be a valuable reference to workers both inside and outside the field, including graduate students and young investigators interested in developing new research programs in this area.
  biological inorganic chemistry structure and reactivity: A Textbook of Inorganic Chemistry – Volume 1 Mandeep Dalal, 2017-01-01 An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled A Textbook of Inorganic Chemistry – Volume I, II, III, IV. CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.
  biological inorganic chemistry structure and reactivity: The Alkali Metal Ions: Their Role for Life Astrid Sigel, Helmut Sigel, Roland K. O. Sigel, 2016-02-09 MILS-16 provides an up-to-date review of the impact of alkali metal ions on life. Their bioinorganic chemistry and analytical determination, the solid state structures of bio-ligand complexes and the properties of alkali metal ions in solution in the context of all kinds of biologically relevant ligands are covered, this includes proteins (enzymes) and nucleic acids (G-quadruplexes). Minerals containing sodium (Na+) and potassium (K+) are abundant in the Earth's crust, making Na+ and K+ easily available. In contrast, the alkali elements lithium (Li+), rubidium, and cesium are rare and the radioactive francium occurs only in traces. Since the intra- and extracellular, as well as the compartmental concentrations of Na+ and K+ differ significantly, homeostasis and active transport of these ions are important; this involves transporters/carriers and pore-forming ion channel proteins. Systems like Na+/K+-ATPases, H+/K+-ATPases or Na+/H+ antiporters are thoroughly discussed. The role of K+ in photosynthesis and the role of Na+ in charging the battery of life are pointed out. Also, the relationships between alkali metal ions and diseases (e.g., Parkinson or traumatic brain injury) are covered and the relevance of Li+ salts in medicine (pharmacology and mechanism) is reviewed. This and more is treated in an authoritative and timely manner in the 16 stimulating chapters of Volume 16, The Alkali Metal Ions: Their Role for Life, which are written by 44 internationally recognized experts from 12 nations. The impact of this vibrant research area is manifested in nearly 3000 references, over 30 tables and more than 150 illustrations (two thirds in color). MILS-16 also provides excellent information for teaching. Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel have long-standing interests in Biological Inorganic Chemistry. Their research focuses on metal ion interactions with nucleotides and nucleic acids and on related topics. They edited previously 44 volumes in the series Metal Ions in Biological Systems.
  biological inorganic chemistry structure and reactivity: Problems in Structural Inorganic Chemistry Wai-Kee Li, Yu-San Cheung, Hung Kay Lee, Dennis Kee Pui Ng, Thomas Chung Wai Mak, Kendrew Kin Wah Mak, 2019 This textbook offers over 400 problems and solutions in structural inorganic chemistry for senior undergraduates and beginning graduates. It is an updated companion text to Advanced Structural Inorganic Chemistry by the same authors. The new edition adds over 100 new problems and three new chapters on metal compounds and bioinorganic chemistry.
  biological inorganic chemistry structure and reactivity: Activation of Small Molecules William B. Tolman, 2006-12-13 The first to combine both the bioinorganic and the organometallic view, this handbook provides all the necessary knowledge in one convenient volume. Alongside a look at CO2 and N2 reduction, the authors discuss O2, NO and N2O binding and reduction, activation of H2 and the oxidation catalysis of O2. Edited by the highly renowned William Tolman, who has won several awards for his research in the field.
  biological inorganic chemistry structure and reactivity: Inorganic Chemical Biology Gilles Gasser, 2014-04-14 Understanding, identifying and influencing the biological systems are the primary objectives of chemical biology. From this perspective, metal complexes have always been of great assistance to chemical biologists, for example, in structural identification and purification of essential biomolecules, for visualizing cellular organelles or to inhibit specific enzymes. This inorganic side of chemical biology, which continues to receive considerable attention, is referred to as inorganic chemical biology. Inorganic Chemical Biology: Principles, Techniques and Applications provides a comprehensive overview of the current and emerging role of metal complexes in chemical biology. Throughout all of the chapters there is a strong emphasis on fundamental theoretical chemistry and experiments that have been carried out in living cells or organisms. Outlooks for the future applications of metal complexes in chemical biology are also discussed. Topics covered include: • Metal complexes as tools for structural biology • IMAC, AAS, XRF and MS as detection techniques for metals in chemical biology • Cell and organism imaging and probing DNA using metal and metal carbonyl complexes • Detection of metal ions, anions and small molecules using metal complexes • Photo-release of metal ions in living cells • Metal complexes as enzyme inhibitors and catalysts in living cells Written by a team of international experts, Inorganic Chemical Biology: Principles, Techniques and Applications is a must-have for bioinorganic, bioorganometallic and medicinal chemists as well as chemical biologists working in both academia and industry.
  biological inorganic chemistry structure and reactivity: Biological Inorganic Chemistry Ivano Bertini, Harry B. Gray, Edward Stiefel, Joan Valentine, 2018-03-23 This guide serves both as an excellent course text for advanced undergraduates and postgraduates, and as a reference for anyone working in this area. Already praised by specialists in the field, this text gives both an overview of biological inorganic chemistry and presents a detailed look at metal-ion containing biological systems.
  biological inorganic chemistry structure and reactivity: Chemical Structure and Reactivity James Keeler, Peter Wothers, 2023 'Chemical Structure and Reactivity' depicts the subject as a seamless discipline, showing how inorganic, organic and physical concepts can be blended together to achieve the common goal of understanding chemical systems. The book includes in-text examples and extensive end-of-chapter questions to encourage learning.
  biological inorganic chemistry structure and reactivity: The Biological Chemistry of Nickel Deborah Zamble, Magdalena Rowińska-Żyrek, Henryk Kozlowski, 2017-03-24 Metal ions play key roles in biology. Many are essential for catalysis, for electron transfer and for the fixation, sensing, and metabolism of gases. Others compete with those essential metal ions or have toxic or pharmacological effects. This book is structured around the periodic table and focuses on the control of metal ions in cells. It addresses the molecular aspects of binding, transport and storage that ensure balanced levels of the essential elements. Organisms have also developed mechanisms to deal with the non-essential metal ions. However, through new uses and manufacturing processes, organisms are increasingly exposed to changing levels of both essential and non-essential ions in new chemical forms. They may not have developed defenses against some of these forms (such as nanoparticles). Many diseases such as cancer, diabetes and neurodegeneration are associated with metal ion imbalance. There may be a deficiency of the essential metals, overload of either essential or non-essential metals or perturbation of the overall natural balance. This book is the first to comprehensively survey the molecular nature of the overall natural balance of metal ions in nutrition, toxicology and pharmacology. It is written as an introduction to research for students and researchers in academia and industry and begins with a chapter by Professor R J P Williams FRS.
  biological inorganic chemistry structure and reactivity: Alkenes and Aromatics P G Taylor, J M F Gagan, 2007-10-31 Alkenes and Aromatics examines the reaction mechanisms associated with carbon-carbon double bonds, and then goes on to look at aromatic substitution (nitration, halogenation, sulfonation and Friedel Crafts reactions). The formation and reactions of diazonium ions are also discussed. This knowledge is then applied to the synthesis of pseudoephedrine, highlighting the key aspects of synthesis, such as yields, stereochemistry and reaction conditions. A Case Study on the organic chemical industry completes the book, providing a background as to why understanding organic reactions is so important. The Molecular World series provides an integrated introduction to all branches of chemistry for both students wishing to specialise and those wishing to gain a broad understanding of chemistry and its relevance to the everyday world and to other areas of science. The books, with their Case Studies and accompanying multi-media interactive CD-ROMs, will also provide valuable resource material for teachers and lecturers. (The CD-ROMs are designed for use on a PC running Windows 95, 98, ME or 2000.)
  biological inorganic chemistry structure and reactivity: Inorganic Structural Chemistry Ulrich M]ller, 1993-04-15 An introductory textbook on the structural principles of inorganic-chemical molecules and solids. Traditional concepts and modern approaches are considered and demonstrated with the aid of examples. The most important structural types are examined from different perspectives.
  biological inorganic chemistry structure and reactivity: Inorganic Biochemistry J. A. Cowan, 1997-03-21 The text will provide a set of problems covering mechanistic, structural and spectroscopic issues in inorganic chemistry. Specific areas to be covered include coordination chemistry, physiochemical aspects of solution chemistry, inorganic chemistry of biological systems (both natural biomolecules and bioinorganic models). Illustrative worked examples will be included. The problems will be categorized by topic chapters for ease of reference and use in courses. They will provide a valuable resource for instructors, providing a means of testing and developing the many principles covered in texts and advanced courses. Often students find it difficult to find practical problems to test the principles they have learned in class. This text will provide a series of questions to test understanding and worked examples as a pedagogical aid.
  biological inorganic chemistry structure and reactivity: Inorganic Chemistry , 2024
  biological inorganic chemistry structure and reactivity: Descriptive Inorganic Chemistry Geoff Rayner-Canham, 2013-12-22 This bestselling text gives students a less rigorous, less mathematical way of learning inorganic chemistry, using the periodic table as a context for exploring chemical properties and uncovering relationships between elements in different groups. The authors help students understand the relevance of the subject to their lives by covering both the historical development and fascinating contemporary applications of inorganic chemistry (especially in regard to industrial processes and environmental issues). The new edition offers new study tools, expanded coverage of biological applications, and new help with problem-solving.
  biological inorganic chemistry structure and reactivity: Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II D. Michael P. Mingos, 2014-06-19 The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer for all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.
  biological inorganic chemistry structure and reactivity: Reaction Mechanisms of Metal Complexes R W Hay, 2000-03-15 The text will be of interest to biochemists, biological chemists, organic and inorganic chemists, and metallurgists in academia and industry.--BOOK JACKET.
  biological inorganic chemistry structure and reactivity: Biological Inorganic Chemistry Robert R. Crichton, 2012-02-02 The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. This text, written by a biochemist, presents an introduction to this field.
  biological inorganic chemistry structure and reactivity: TRANSITION METALS AND SULFUR , 2020
  biological inorganic chemistry structure and reactivity: Bioinorganic Chemistry Ivano Bertini, 2007-01-01
  biological inorganic chemistry structure and reactivity: Bioinorganic Chemistry Ei-ichiro Ochiai, 1977
  biological inorganic chemistry structure and reactivity: Molybdenum Enzymes Thomas G. Spiro, 1985-11-14 Volume 7 in the Metal Ions in Biology Series, divided into two parts, covers the nitrogenase enzyme complex and the molybdenum redox enzymes. Part one covers the chemistry of Mo-Fe-S clusters and their relationship to nitrogenase, cofactor chemistry and biochemistry of nitrogenase, spectroscopic and electrochemical studies of the Fe-Mo cofactor and Fe-S clusters, and more. Part Two surveys oxo-molybdenum chemistry, discusses the nature of the molybdo-pterin complex, and describes the characteristics of several of the Mo redox enzymes.
  biological inorganic chemistry structure and reactivity: Concepts and Models of Inorganic Chemistry Bodie Eugene Douglas, Darl H. MacDaniel, John J. Alexander, 1994 Utilizing concepts and models as an organizing principle designed to facilitate the student's understanding of the subject, this revised text contains a new chapter on group theory and detailed coverage of solid state chemistry.
Biologicals - World Health Organization (WHO)
4 days ago · Biological therapeutics, also referred to as Biologicals, are those class of medicines which are grown and then purified from large-scale cell cultures of bacteria or yeast, or plant or …

International Day for Biological Diversity: Harmony between …
May 19, 2025 · This year’s International Day for Biological Diversity, on Thursday, 22 May 2025, highlights the inherent connections between people and the natural world through the theme, …

WHO good manufacturing practices for biological products
present in raw materials, media, biological substances, intermediates or finished products. Regarded as contamination when the level and/or type exceed specifications. Biohazard: any …

Laboratory biosafety manual, 4th edition - World Health …
Dec 21, 2020 · This fourth edition of the manual builds on the risk assessment framework introduced in the third edition. A thorough, evidence-based and transparent assessment of the …

Biological weapons - World Health Organization (WHO)
Sep 6, 2018 · The use of biological agents is a serious concern, and the risk of using these agents in a terrorist attack is thought to be increasing. Preparedness WHO focuses on the possible …

Determinants of health
Oct 4, 2024 · Food and water are the major sources of exposure to both chemical and biological hazards. They impose a substantial health risk to consumers and economic burdens on …

Mental health - World Health Organization (WHO)
Jun 17, 2022 · Individual psychological and biological factors such as emotional skills, substance use and genetics can make people more vulnerable to mental health problems. Exposure to …

Biotherapeutic products - World Health Organization (WHO)
Biotechnology describes biological processes that have been manipulated or modified in some way through modern science. A major industrial application of biotechnology is in the …

Ionizing radiation and health effects - World Health Organization …
Jul 27, 2023 · WHO fact sheet on ionizing radiation, health effects and protective measures: includes key facts, definition, sources, type of exposure, health effects, nuclear emergencies, …

Health products policy and standards - World Health Organization …
The catalogue of international reference standards for biological products is updated following the Expert Committee on Biological Standardization meetings. See below for the catalogue, listed …

Biologicals - World Health Organization (WHO)
4 days ago · Biological therapeutics, also referred to as Biologicals, are those class of medicines which are grown and then purified from large-scale cell cultures of bacteria or yeast, or plant or …

International Day for Biological Diversity: Harmony between …
May 19, 2025 · This year’s International Day for Biological Diversity, on Thursday, 22 May 2025, highlights the inherent connections between people and the natural world through the theme, …

WHO good manufacturing practices for biological products
present in raw materials, media, biological substances, intermediates or finished products. Regarded as contamination when the level and/or type exceed specifications. Biohazard: any …

Laboratory biosafety manual, 4th edition - World Health …
Dec 21, 2020 · This fourth edition of the manual builds on the risk assessment framework introduced in the third edition. A thorough, evidence-based and transparent assessment of the …

Biological weapons - World Health Organization (WHO)
Sep 6, 2018 · The use of biological agents is a serious concern, and the risk of using these agents in a terrorist attack is thought to be increasing. Preparedness WHO focuses on the …

Determinants of health
Oct 4, 2024 · Food and water are the major sources of exposure to both chemical and biological hazards. They impose a substantial health risk to consumers and economic burdens on …

Mental health - World Health Organization (WHO)
Jun 17, 2022 · Individual psychological and biological factors such as emotional skills, substance use and genetics can make people more vulnerable to mental health problems. Exposure to …

Biotherapeutic products - World Health Organization (WHO)
Biotechnology describes biological processes that have been manipulated or modified in some way through modern science. A major industrial application of biotechnology is in the …

Ionizing radiation and health effects - World Health Organization …
Jul 27, 2023 · WHO fact sheet on ionizing radiation, health effects and protective measures: includes key facts, definition, sources, type of exposure, health effects, nuclear emergencies, …

Health products policy and standards - World Health Organization …
The catalogue of international reference standards for biological products is updated following the Expert Committee on Biological Standardization meetings. See below for the catalogue, listed …