Advertisement
applied probability models and intuition: Applied Probability Arnold Barnett, 2015 |
applied probability models and intuition: Applied Statistics Arnold Barnett, 2015 |
applied probability models and intuition: Applied Probability Frank A. Haight, 2013-03-09 Probability (including stochastic processes) is now being applied to virtually every academic discipline, especially to the sciences. An area of substantial application is that known as operations research or industrial engineering, which incorporates subjects such as queueing theory, optimization, and network flow. This book provides a compact introduction to that field for students with minimal preparation, knowing mainly calculus and having mathe matical maturity. Beginning with the basics of probability, the develop ment is self-contained but not abstract, that is, without measure theory and its probabilistic counterpart. Although the text is reasonably short, a course based on this book will normally occupy two semesters or three quarters. There are many points in the discussions and problems which require the assistance of an instructor for completeness and clarity. The book is designed to give equal emphasis to those applications which motivate the subject and to appropriatemathematical techniques. Thus, the student who has successfully completed the course is ready to turn in either of two directions: towards direct study of research papers in operations research, or towards a course in abstract probability, for which this text provides the intuitive background. Frank A. Haight Pennsylvania State University vii Contents 1. Discrete Probability .................................................. 1 1.1. Applied Probability. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Sample Spaces ......................................................... 3 1.3. Probability Distributions and Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4. The Connection between Distributions and Sample Points: Random Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . |
applied probability models and intuition: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. |
applied probability models and intuition: Introduction to Probability Models, Student Solutions Manual (e-only) Sheldon M. Ross, 2010-01-01 Introduction to Probability Models, Student Solutions Manual (e-only) |
applied probability models and intuition: Probability Theory , 2013 Probability theory |
applied probability models and intuition: Probabilistic Foundations of Statistical Network Analysis Harry Crane, 2018-04-17 Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE. |
applied probability models and intuition: The Probability Companion for Engineering and Computer Science Adam Prügel-Bennett, 2020-01-23 Using examples and building intuition, this friendly guide helps readers understand and use probabilistic tools from basic to sophisticated. |
applied probability models and intuition: Chance, Logic and Intuition Steven Tijms, 2021 Chance rules our daily lives in many different ways. From the outcomes of the lottery to the outcomes of medical tests, from the basketball court to the court of law. The ways of chance are capricious. Bizarre things happen all the time. Nevertheless, chance has a logic of its own. It obeys the rules of probability. But if you open a standard book on probability, you may very well feel far removed from everyday life. Abstract formulas and mathematical symbols stare back at you with almost every turn of the page. This book introduces you to the logic of chance without the use of mathematical formulas or symbols. In Part One, you will meet the fascinating pioneers of the mathematics of probability, including Galileo Galilei and Blaise Pascal. Their stories will introduce you, step by step, to the basics of probability. In Part Two, various examples in all areas of daily life will show you how chance defies our expectations time and again. But armed with the basic rules of probability and a good dose of inventiveness, you will be able to unravel the counter-intuitive logic of chance-- |
applied probability models and intuition: Models for Probability and Statistical Inference James H. Stapleton, 2007-12-14 This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers. |
applied probability models and intuition: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
applied probability models and intuition: Applied Probability Kenneth Lange, 2008-01-17 Despite the fears of university mathematics departments, mathematics educat,ion is growing rather than declining. But the truth of the matter is that the increases are occurring outside departments of mathematics. Engineers, computer scientists, physicists, chemists, economists, statis- cians, biologists, and even philosophers teach and learn a great deal of mathematics. The teaching is not always terribly rigorous, but it tends to be better motivated and better adapted to the needs of students. In my own experience teaching students of biostatistics and mathematical bi- ogy, I attempt to convey both the beauty and utility of probability. This is a tall order, partially because probability theory has its own vocabulary and habits of thought. The axiomatic presentation of advanced probability typically proceeds via measure theory. This approach has the advantage of rigor, but it inwitably misses most of the interesting applications, and many applied scientists rebel against the onslaught of technicalities. In the current book, I endeavor to achieve a balance between theory and app- cations in a rather short compass. While the combination of brevity apd balance sacrifices many of the proofs of a rigorous course, it is still cons- tent with supplying students with many of the relevant theoretical tools. In my opinion, it better to present the mathematical facts without proof rather than omit them altogether. |
applied probability models and intuition: Probability Models for Economic Decisions, second edition Roger B. Myerson, Eduardo Zambrano, 2019-12-17 An introduction to the use of probability models for analyzing risk and economic decisions, using spreadsheets to represent and simulate uncertainty. This textbook offers an introduction to the use of probability models for analyzing risks and economic decisions. It takes a learn-by-doing approach, teaching the student to use spreadsheets to represent and simulate uncertainty and to analyze the effect of such uncertainty on an economic decision. Students in applied business and economics can more easily grasp difficult analytical methods with Excel spreadsheets. The book covers the basic ideas of probability, how to simulate random variables, and how to compute conditional probabilities via Monte Carlo simulation. The first four chapters use a large collection of probability distributions to simulate a range of problems involving worker efficiency, market entry, oil exploration, repeated investment, and subjective belief elicitation. The book then covers correlation and multivariate normal random variables; conditional expectation; optimization of decision variables, with discussions of the strategic value of information, decision trees, game theory, and adverse selection; risk sharing and finance; dynamic models of growth; dynamic models of arrivals; and model risk. New material in this second edition includes two new chapters on additional dynamic models and model risk; new sections in every chapter; many new end-of-chapter exercises; and coverage of such topics as simulation model workflow, models of probabilistic electoral forecasting, and real options. The book comes equipped with Simtools, an open-source, free software used througout the book, which allows students to conduct Monte Carlo simulations seamlessly in Excel. |
applied probability models and intuition: Introduction to Probability Dimitri Bertsekas, John N. Tsitsiklis, 2008-07-01 An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. |
applied probability models and intuition: Introduction to Probability Models Sheldon M. Ross, 2007 Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries. |
applied probability models and intuition: Introduction to Probability Models Sheldon M. Ross, 2006-12-11 Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics |
applied probability models and intuition: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning. |
applied probability models and intuition: Introduction to Applied Probability Paul E. Pfeiffer, David A. Schum, 2014-05-10 Introduction to Applied Probability provides a basis for an intelligent application of probability ideas to a wide variety of phenomena for which it is suitable. It is intended as a tool for learning and seeks to point out and emphasize significant facts and interpretations which are frequently overlooked or confused by the beginner. The book covers more than enough material for a one semester course, enhancing the value of the book as a reference for the student. Notable features of the book are: the systematic handling of combinations of events (Section 3-5); extensive use of the mass concept as an aid to visualization; an unusually careful treatment of conditional probability, independence, and conditional independence (Section 6-4); the resulting clarification facilitates the formulation of many applied problems; the emphasis on events determined by random variables, which gives unity and clarity to many topics important for interpretation; and the utilization of the indicator function, both as a tool for dealing with events and as a notational device in the handling of random variables. Students of mathematics, engineering, biological and physical sciences will find the text highly useful. |
applied probability models and intuition: Bayes Rules! Alicia A. Johnson, Miles Q. Ott, Mine Dogucu, 2022-03-03 Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics. Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory. |
applied probability models and intuition: Stochastic Calculus and Financial Applications J. Michael Steele, 2012-12-06 This book is designed for students who want to develop professional skill in stochastic calculus and its application to problems in finance. The Wharton School course that forms the basis for this book is designed for energetic students who have had some experience with probability and statistics but have not had ad vanced courses in stochastic processes. Although the course assumes only a modest background, it moves quickly, and in the end, students can expect to have tools that are deep enough and rich enough to be relied on throughout their professional careers. The course begins with simple random walk and the analysis of gambling games. This material is used to motivate the theory of martingales, and, after reaching a decent level of confidence with discrete processes, the course takes up the more de manding development of continuous-time stochastic processes, especially Brownian motion. The construction of Brownian motion is given in detail, and enough mate rial on the subtle nature of Brownian paths is developed for the student to evolve a good sense of when intuition can be trusted and when it cannot. The course then takes up the Ito integral in earnest. The development of stochastic integration aims to be careful and complete without being pedantic. |
applied probability models and intuition: Handbook of Research on Mathematics Teaching and Learning Douglas Grouws, 2006-11-01 Sponsored by the National Council of Teachers of Mathematics and written by leading experts in the field of mathematics education, the Handbook is specifically designed to make important, vital scholarship accessible to mathematics education professors, graduate students, educational researchers, staff development directors, curriculum supervisors, and teachers. The Handbook provides a framework for understanding the evolution of the mathematics education research field against the backdrop of well-established conceptual, historical, theoretical, and methodological perspectives. It is an indispensable working tool for everyone interested in pursuing research in mathematics education as the references for each of the Handbook's twenty-nine chapters are complete resources for both current and past work in that particular area. |
applied probability models and intuition: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2010-03-01 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor to the course, incorporating the computer and offering an integrated approach to inference that includes the frequency approach and the Bayesian inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout. Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. The new edition includes a number of features designed to make the material more accessible and level-appropriate to the students taking this course today. |
applied probability models and intuition: Probability Rick Durrett, 2010-08-30 This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject. |
applied probability models and intuition: Applied Finite Mathematics Howard Anton, Bernard Kolman, 2014-05-10 Applied Finite Mathematics, Second Edition presents the fundamentals of finite mathematics in a style tailored for beginners, but at the same time covers the subject matter in sufficient depth so that the student can see a rich variety of realistic and relevant applications. Some applications of probability, game theory, and Markov chains are given. Comprised of 10 chapters, this book begins with an introduction to set theory, followed by a discussion on Cartesian coordinate systems and graphs. Subsequent chapters focus on linear programming from a geometric and algebraic point of view; matrices, the solution of linear systems, and applications; the simplex method for solving linear programming problems; and probability and probability models for finite sample spaces as well as permutations, combinations, and counting methods. Basic concepts in statistics are also considered, along with the mathematics of finance. The final chapter is devoted to computers and programming languages such as BASIC. This monograph is intended for students and instructors of applied mathematics. |
applied probability models and intuition: Chance, Logic And Intuition: An Introduction To The Counter-intuitive Logic Of Chance Steven Tijms, 2021-02-18 Chance rules our daily lives in many different ways. From the outcomes of the lottery to the outcomes of medical tests, from the basketball court to the court of law. The ways of chance are capricious. Bizarre things happen all the time. Nevertheless, chance has a logic of its own. It obeys the rules of probability. But if you open a standard book on probability, you may very well feel far removed from everyday life. Abstract formulas and mathematical symbols stare back at you with almost every turn of the page.This book introduces you to the logic of chance without the use of mathematical formulas or symbols. In Part One, you will meet the fascinating pioneers of the mathematics of probability, including Galileo Galilei and Blaise Pascal. Their stories will introduce you, step by step, to the basics of probability. In Part Two, various examples in all areas of daily life will show you how chance defies our expectations time and again. But armed with the basic rules of probability and a good dose of inventiveness, you will be able to unravel the counter-intuitive logic of chance. |
applied probability models and intuition: Applied Stochastic Differential Equations Simo Särkkä, Arno Solin, 2019-05-02 With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice. |
applied probability models and intuition: Discretization of Processes Jean Jacod, Philip Protter, 2011-10-22 In applications, and especially in mathematical finance, random time-dependent events are often modeled as stochastic processes. Assumptions are made about the structure of such processes, and serious researchers will want to justify those assumptions through the use of data. As statisticians are wont to say, “In God we trust; all others must bring data.” This book establishes the theory of how to go about estimating not just scalar parameters about a proposed model, but also the underlying structure of the model itself. Classic statistical tools are used: the law of large numbers, and the central limit theorem. Researchers have recently developed creative and original methods to use these tools in sophisticated (but highly technical) ways to reveal new details about the underlying structure. For the first time in book form, the authors present these latest techniques, based on research from the last 10 years. They include new findings. This book will be of special interest to researchers, combining the theory of mathematical finance with its investigation using market data, and it will also prove to be useful in a broad range of applications, such as to mathematical biology, chemical engineering, and physics. |
applied probability models and intuition: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
applied probability models and intuition: Introduction to Probability Charles Miller Grinstead, James Laurie Snell, 2012-10-30 This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. |
applied probability models and intuition: Probability Models Patrick W. Hopfensperfer, Henry Kranendonk, Richard Scheaffer, 1999 |
applied probability models and intuition: The Theory of Probability Santosh S. Venkatesh, 2013 From classical foundations to modern theory, this comprehensive guide to probability interweaves mathematical proofs, historical context and detailed illustrative applications. |
applied probability models and intuition: Probability and Statistical Inference Miltiadis C. Mavrakakis, Jeremy Penzer, 2021-03-28 Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields. |
applied probability models and intuition: Thinking, Fast and Slow Daniel Kahneman, 2011-11-01 NEW YORK TIMES BESTSELLER The guru to the gurus at last shares his knowledge with the rest of us. Nobel laureate Daniel Kahneman's seminal studies in behavioral psychology, behavioral economics, and happiness studies have influenced numerous other authors, including Steven Pinker and Malcolm Gladwell. In Thinking, Fast and Slow, Kahneman at last offers his own, first book for the general public. It is a lucid and enlightening summary of his life's work. It will change the way you think about thinking. Two systems drive the way we think and make choices, Kahneman explains: System One is fast, intuitive, and emotional; System Two is slower, more deliberative, and more logical. Examining how both systems function within the mind, Kahneman exposes the extraordinary capabilities as well as the biases of fast thinking and the pervasive influence of intuitive impressions on our thoughts and our choices. Engaging the reader in a lively conversation about how we think, he shows where we can trust our intuitions and how we can tap into the benefits of slow thinking, contrasting the two-system view of the mind with the standard model of the rational economic agent. Kahneman's singularly influential work has transformed cognitive psychology and launched the new fields of behavioral economics and happiness studies. In this path-breaking book, Kahneman shows how the mind works, and offers practical and enlightening insights into how choices are made in both our business and personal lives--and how we can guard against the mental glitches that often get us into trouble. |
applied probability models and intuition: Recent Advances in Applied Probability Ricardo Baeza-Yates, Joseph Glaz, Henryk Gzyl, Jürg Hüsler, José Luis Palacios, 2006-02-28 Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability. |
applied probability models and intuition: Statistics for the Terrified John H. Kranzler, 2017-12-01 Statistics for the Terrified offers a clear and concise introduction to statistics. Perfect as a brief core or supplementary text for undergraduate courses in statistics and research methods, this Sixth Edition is also an ideal refresher for graduate students who have already taken a statistics course. Designed for students who may struggle with mathematical concepts, its informal and highly engaging narrative includes self-help strategies, numerous concrete examples, and a great deal of humor to encourage students from all backgrounds to the study of statistics. |
applied probability models and intuition: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
applied probability models and intuition: Statistics for Long-Memory Processes Jan Beran, 1994-10-01 Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence. |
applied probability models and intuition: Understanding Probability Henk Tijms, 2012-06-14 Understanding Probability is a unique and stimulating approach to a first course in probability. The first part of the book demystifies probability and uses many wonderful probability applications from everyday life to help the reader develop a feel for probabilities. The second part, covering a wide range of topics, teaches clearly and simply the basics of probability. This fully revised third edition has been packed with even more exercises and examples and it includes new sections on Bayesian inference, Markov chain Monte-Carlo simulation, hitting probabilities in random walks and Brownian motion, and a new chapter on continuous-time Markov chains with applications. Here you will find all the material taught in an introductory probability course. The first part of the book, with its easy-going style, can be read by anybody with a reasonable background in high school mathematics. The second part of the book requires a basic course in calculus. |
Applied | Homepage
At Applied ®, we are proud of our rich heritage built on a strong foundation of quality brands, comprehensive solutions, dedicated customer service, sound ethics and a commitment to our …
APPLIED Definition & Meaning - Merriam-Webster
The meaning of APPLIED is put to practical use; especially : applying general principles to solve definite problems. How to use applied in a sentence.
Applied - definition of applied by The Free Dictionary
Define applied. applied synonyms, applied pronunciation, applied translation, English dictionary definition of applied. adj. Put into practice or to a particular use ...
APPLIED Definition & Meaning | Dictionary.com
Applied definition: having a practical purpose or use; derived from or involved with actual phenomena (theoretical,pure ).. See examples of APPLIED used in a sentence.
Applied Optics Inc in Hillsborough, NC 27278 - 919-245...
About Applied Optics Inc Applied Optics Inc is located at 505 Meadowlands Dr STE 107 in Hillsborough, North Carolina 27278. Applied Optics Inc can be contacted via phone at 919-245 …
Applied or Applyed – Which is Correct? - Two Minute English
Feb 18, 2025 · Which is the Correct Form Between "Applied" or "Applyed"? Think about when you’ve cooked something. If you used a recipe, you followed specific steps. We can think of …
APPLIED definition and meaning | Collins English Dictionary
Related to or put to practical use → Compare pure (sense 5).... Click for English pronunciations, examples sentences, video.
applied adjective - Definition, pictures, pronunciation and usage …
Definition of applied adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
applied - WordReference.com Dictionary of English
ap•plied (ə plīd′), adj. having a practical purpose or use; derived from or involved with actual phenomena (distinguished from theoretical, opposed to pure): applied mathematics; applied …
applied - Wiktionary, the free dictionary
Feb 11, 2025 · applied (not comparable) Put into practical use. Of a branch of science, serving another branch of science or engineering. Antonym: pure
Applied | Homepage
At Applied ®, we are proud of our rich heritage built on a strong foundation of quality brands, comprehensive solutions, dedicated customer service, sound ethics and a commitment to our …
APPLIED Definition & Meaning - Merriam-Webster
The meaning of APPLIED is put to practical use; especially : applying general principles to solve definite problems. How to use applied in a sentence.
Applied - definition of applied by The Free Dictionary
Define applied. applied synonyms, applied pronunciation, applied translation, English dictionary definition of applied. adj. Put into practice or to a particular use ...
APPLIED Definition & Meaning | Dictionary.com
Applied definition: having a practical purpose or use; derived from or involved with actual phenomena (theoretical,pure ).. See examples of APPLIED used in a sentence.
Applied Optics Inc in Hillsborough, NC 27278 - 919-245...
About Applied Optics Inc Applied Optics Inc is located at 505 Meadowlands Dr STE 107 in Hillsborough, North Carolina 27278. Applied Optics Inc can be contacted via phone at 919-245 …
Applied or Applyed – Which is Correct? - Two Minute English
Feb 18, 2025 · Which is the Correct Form Between "Applied" or "Applyed"? Think about when you’ve cooked something. If you used a recipe, you followed specific steps. We can think of …
APPLIED definition and meaning | Collins English Dictionary
Related to or put to practical use → Compare pure (sense 5).... Click for English pronunciations, examples sentences, video.
applied adjective - Definition, pictures, pronunciation and usage …
Definition of applied adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
applied - WordReference.com Dictionary of English
ap•plied (ə plīd′), adj. having a practical purpose or use; derived from or involved with actual phenomena (distinguished from theoretical, opposed to pure): applied mathematics; applied …
applied - Wiktionary, the free dictionary
Feb 11, 2025 · applied (not comparable) Put into practical use. Of a branch of science, serving another branch of science or engineering. Antonym: pure