Advertisement
applied optimal estimation: Applied Optimal Estimation The Analytic Sciences Corporation, 1974-05-15 This is the first book on the optimal estimation that places its major emphasis on practical applications, treating the subject more from an engineering than a mathematical orientation. Even so, theoretical and mathematical concepts are introduced and developed sufficiently to make the book a self-contained source of instruction for readers without prior knowledge of the basic principles of the field. The work is the product of the technical staff of The Analytic Sciences Corporation (TASC), an organization whose success has resulted largely from its applications of optimal estimation techniques to a wide variety of real situations involving large-scale systems. Arthur Gelb writes in the Foreword that It is our intent throughout to provide a simple and interesting picture of the central issues underlying modern estimation theory and practice. Heuristic, rather than theoretically elegant, arguments are used extensively, with emphasis on physical insights and key questions of practical importance. Numerous illustrative examples, many based on actual applications, have been interspersed throughout the text to lead the student to a concrete understanding of the theoretical material. The inclusion of problems with built-in answers at the end of each of the nine chapters further enhances the self-study potential of the text. After a brief historical prelude, the book introduces the mathematics underlying random process theory and state-space characterization of linear dynamic systems. The theory and practice of optimal estimation is them presented, including filtering, smoothing, and prediction. Both linear and non-linear systems, and continuous- and discrete-time cases, are covered in considerable detail. New results are described concerning the application of covariance analysis to non-linear systems and the connection between observers and optimal estimators. The final chapters treat such practical and often pivotal issues as suboptimal structure, and computer loading considerations. This book is an outgrowth of a course given by TASC at a number of US Government facilities. Virtually all of the members of the TASC technical staff have, at one time and in one way or another, contributed to the material contained in the work. |
applied optimal estimation: Applied Optimal Estimation Arthur Gelb, ANALYTIC SCIENCES CORPORATION., 1992 |
applied optimal estimation: Optimal Estimation of Dynamic Systems John L. Crassidis, John L. Junkins, 2004-04-27 Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation. Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals received are used to determine highly sensitive processes such as the flight path of a plane, the orbit of a space vehicle, or the control of a machine. The authors use dynamic models from mechanical and aerospace engineering to provide immediate results of estimation concepts with a minimal reliance on mathematical skills. The book documents the development of the central concepts and methods of optimal estimation theory in a manner accessible to engineering students, applied mathematicians, and practicing engineers. It includes rigorous theoretial derivations and a significant amount of qualitiative discussion and judgements. It also presents prototype algorithms, giving detail and discussion to stimulate development of efficient computer programs and intelligent use of them. This book illustrates the application of optimal estimation methods to problems with varying degrees of analytical and numercial difficulty. It compares various approaches to help develop a feel for the absolute and relative utility of different methods, and provides many applications in the fields of aerospace, mechanical, and electrical engineering. |
applied optimal estimation: Optimal State Estimation Dan Simon, 2006-06-19 A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries. |
applied optimal estimation: Applied Optimal Control A. E. Bryson, 2018-05-04 This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included. |
applied optimal estimation: Applied Optimal Control A. E. Bryson, 1975-01-01 This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it “a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.” |
applied optimal estimation: Applied Optimal Estimation The Analytic Sciences Corporation, 1974-05-15 This is the first book on the optimal estimation that places its major emphasis on practical applications, treating the subject more from an engineering than a mathematical orientation. Even so, theoretical and mathematical concepts are introduced and developed sufficiently to make the book a self-contained source of instruction for readers without prior knowledge of the basic principles of the field. The work is the product of the technical staff of The Analytic Sciences Corporation (TASC), an organization whose success has resulted largely from its applications of optimal estimation techniques to a wide variety of real situations involving large-scale systems. Arthur Gelb writes in the Foreword that It is our intent throughout to provide a simple and interesting picture of the central issues underlying modern estimation theory and practice. Heuristic, rather than theoretically elegant, arguments are used extensively, with emphasis on physical insights and key questions of practical importance. Numerous illustrative examples, many based on actual applications, have been interspersed throughout the text to lead the student to a concrete understanding of the theoretical material. The inclusion of problems with built-in answers at the end of each of the nine chapters further enhances the self-study potential of the text. After a brief historical prelude, the book introduces the mathematics underlying random process theory and state-space characterization of linear dynamic systems. The theory and practice of optimal estimation is them presented, including filtering, smoothing, and prediction. Both linear and non-linear systems, and continuous- and discrete-time cases, are covered in considerable detail. New results are described concerning the application of covariance analysis to non-linear systems and the connection between observers and optimal estimators. The final chapters treat such practical and often pivotal issues as suboptimal structure, and computer loading considerations. This book is an outgrowth of a course given by TASC at a number of US Government facilities. Virtually all of the members of the TASC technical staff have, at one time and in one way or another, contributed to the material contained in the work. |
applied optimal estimation: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming John T. Betts, 2010-01-01 The book describes how sparse optimization methods can be combined with discretization techniques for differential-algebraic equations and used to solve optimal control and estimation problems. The interaction between optimization and integration is emphasized throughout the book. |
applied optimal estimation: Applied State Estimation and Association Chaw-Bing Chang, Keh-Ping Dunn, 2016-07-08 A rigorous introduction to the theory and applications of state estimation and association, an important area in aerospace, electronics, and defense industries. Applied state estimation and association is an important area for practicing engineers in aerospace, electronics, and defense industries, used in such tasks as signal processing, tracking, and navigation. This book offers a rigorous introduction to both theory and application of state estimation and association. It takes a unified approach to problem formulation and solution development that helps students and junior engineers build a sound theoretical foundation for their work and develop skills and tools for practical applications. Chapters 1 through 6 focus on solving the problem of estimation with a single sensor observing a single object, and cover such topics as parameter estimation, state estimation for linear and nonlinear systems, and multiple model estimation algorithms. Chapters 7 through 10 expand the discussion to consider multiple sensors and multiple objects. The book can be used in a first-year graduate course in control or system engineering or as a reference for professionals. Each chapter ends with problems that will help readers to develop derivation skills that can be applied to new problems and to build computer models that offer a useful set of tools for problem solving. Readers must be familiar with state-variable representation of systems and basic probability theory including random and stochastic processes. |
applied optimal estimation: Optimal Control and Estimation Robert F. Stengel, 1994-09-20 An excellent introduction to optimal control and estimation theory and its relationship with LQG design. . . . invaluable as a reference for those already familiar with the subject. — Automatica. This highly regarded graduate-level text provides a comprehensive introduction to optimal control theory for stochastic systems, emphasizing application of its basic concepts to real problems. The first two chapters introduce optimal control and review the mathematics of control and estimation. Chapter 3 addresses optimal control of systems that may be nonlinear and time-varying, but whose inputs and parameters are known without error. Chapter 4 of the book presents methods for estimating the dynamic states of a system that is driven by uncertain forces and is observed with random measurement error. Chapter 5 discusses the general problem of stochastic optimal control, and the concluding chapter covers linear time-invariant systems. Robert F. Stengel is Professor of Mechanical and Aerospace Engineering at Princeton University, where he directs the Topical Program on Robotics and Intelligent Systems and the Laboratory for Control and Automation. He was a principal designer of the Project Apollo Lunar Module control system. An excellent teaching book with many examples and worked problems which would be ideal for self-study or for use in the classroom. . . . The book also has a practical orientation and would be of considerable use to people applying these techniques in practice. — Short Book Reviews, Publication of the International Statistical Institute. An excellent book which guides the reader through most of the important concepts and techniques. . . . A useful book for students (and their teachers) and for those practicing engineers who require a comprehensive reference to the subject. — Library Reviews, The Royal Aeronautical Society. |
applied optimal estimation: Continuous Time Dynamical Systems B.M. Mohan, S.K. Kar, 2012-10-24 Optimal control deals with the problem of finding a control law for a given system such that a certain optimality criterion is achieved. An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost functional. This book, Continuous Time Dynamical Systems: State Estimation and Optimal Control with Orthogonal Functions, considers different classes of systems with quadratic performance criteria. It then attempts to find the optimal control law for each class of systems using orthogonal functions that can optimize the given performance criteria. Illustrated throughout with detailed examples, the book covers topics including: Block-pulse functions and shifted Legendre polynomials State estimation of linear time-invariant systems Linear optimal control systems incorporating observers Optimal control of systems described by integro-differential equations Linear-quadratic-Gaussian control Optimal control of singular systems Optimal control of time-delay systems with and without reverse time terms Optimal control of second-order nonlinear systems Hierarchical control of linear time-invariant and time-varying systems |
applied optimal estimation: Classification, Parameter Estimation and State Estimation Ferdinand van der Heijden, Robert P. Duin, Dick de Ridder, David M. J. Tax, 2005-06-10 Classification, Parameter Estimation and State Estimation is a practical guide for data analysts and designers of measurement systems and postgraduates students that are interested in advanced measurement systems using MATLAB. 'Prtools' is a powerful MATLAB toolbox for pattern recognition and is written and owned by one of the co-authors, B. Duin of the Delft University of Technology. After an introductory chapter, the book provides the theoretical construction for classification, estimation and state estimation. The book also deals with the skills required to bring the theoretical concepts to practical systems, and how to evaluate these systems. Together with the many examples in the chapters, the book is accompanied by a MATLAB toolbox for pattern recognition and classification. The appendix provides the necessary documentation for this toolbox as well as an overview of the most useful functions from these toolboxes. With its integrated and unified approach to classification, parameter estimation and state estimation, this book is a suitable practical supplement in existing university courses in pattern classification, optimal estimation and data analysis. Covers all contemporary main methods for classification and estimation. Integrated approach to classification, parameter estimation and state estimation Highlights the practical deployment of theoretical issues. Provides a concise and practical approach supported by MATLAB toolbox. Offers exercises at the end of each chapter and numerous worked out examples. PRtools toolbox (MATLAB) and code of worked out examples available from the internet Many examples showing implementations in MATLAB Enables students to practice their skills using a MATLAB environment |
applied optimal estimation: Introduction to Applied Linear Algebra Stephen Boyd, Lieven Vandenberghe, 2018-06-07 A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples. |
applied optimal estimation: Applied Interval Analysis Luc Jaulin, Michel Kieffer, Olivier Didrit, Eric Walter, 2012-12-06 At the core of many engineering problems is the solution of sets of equa tions and inequalities, and the optimization of cost functions. Unfortunately, except in special cases, such as when a set of equations is linear in its un knowns or when a convex cost function has to be minimized under convex constraints, the results obtained by conventional numerical methods are only local and cannot be guaranteed. This means, for example, that the actual global minimum of a cost function may not be reached, or that some global minimizers of this cost function may escape detection. By contrast, interval analysis makes it possible to obtain guaranteed approximations of the set of all the actual solutions of the problem being considered. This, together with the lack of books presenting interval techniques in such a way that they could become part of any engineering numerical tool kit, motivated the writing of this book. The adventure started in 1991 with the preparation by Luc Jaulin of his PhD thesis, under Eric Walter's supervision. It continued with their joint supervision of Olivier Didrit's and Michel Kieffer's PhD theses. More than two years ago, when we presented our book project to Springer, we naively thought that redaction would be a simple matter, given what had already been achieved . . . |
applied optimal estimation: Indefinite-Quadratic Estimation and Control Babak Hassibi, Ali H. Sayed, Thomas Kailath, 1999-01-01 Presents a unified mathematical framework for a wide range of problems in estimation and control. |
applied optimal estimation: Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions Robert Grover Brown, Patrick Y. C. Hwang, 1997 In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work. |
applied optimal estimation: Beyond the Kalman Filter: Particle Filters for Tracking Applications Branko Ristic , Sanjeev Arulampalam, Neil Gordon, 2003-12-01 For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking. |
applied optimal estimation: Applied Stochastic Differential Equations Simo Särkkä, Arno Solin, 2019-05-02 With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice. |
applied optimal estimation: Stochastic Systems P. R. Kumar, Pravin Varaiya, 2015-12-15 Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.? |
applied optimal estimation: Estimation, Control, and the Discrete Kalman Filter Donald E. Catlin, 2012-12-06 In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst. |
applied optimal estimation: Methods of Model Based Process Control R. Berber, 2012-12-06 Model based control has emerged as an important way to improve plant efficiency in the process industries, while meeting processing and operating policy constraints. The reader of Methods of Model Based Process Control will find state of the art reports on model based control technology presented by the world's leading scientists and experts from industry. All the important issues that a model based control system has to address are covered in depth, ranging from dynamic simulation and control-relevant identification to information integration. Specific emerging topics are also covered, such as robust control and nonlinear model predictive control. In addition to critical reviews of recent advances, the reader will find new ideas, industrial applications and views of future needs and challenges. Audience: A reference for graduate-level courses and a comprehensive guide for researchers and industrial control engineers in their explorationof the latest trends in the area. |
applied optimal estimation: Estimation of Stochastic Processes with Missing Observations Mikhail Moklyachuk, Maria Sidei, Oleksandr Masyutka, 2019 We propose results of the investigation of the problem of mean square optimal estimation of linear functionals constructed from unobserved values of stationary stochastic processes. Estimates are based on observations of the processes with additive stationary noise process. The aim of the book is to develop methods for finding the optimal estimates of the functionals in the case where some observations are missing. Formulas for computing values of the mean-square errors and the spectral characteristics of the optimal linear estimates of functionals are derived in the case of spectral certainty, where the spectral densities of the processes are exactly known. The minimax robust method of estimation is applied in the case of spectral uncertainty, where the spectral densities of the processes are not known exactly while some classes of admissible spectral densities are given. The formulas that determine the least favourable spectral densities and the minimax spectral characteristics of the optimal estimates of functionals are proposed for some special classes of admissible densities. |
applied optimal estimation: Stochastic Models, Estimation, and Control Peter S. Maybeck, 1982-08-25 This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws. |
applied optimal estimation: Linear Estimation Thomas Kailath, Ali H. Sayed, Babak Hassibi, 2000 This original work offers the most comprehensive and up-to-date treatment of the important subject of optimal linear estimation, which is encountered in many areas of engineering such as communications, control, and signal processing, and also in several other fields, e.g., econometrics and statistics. The book not only highlights the most significant contributions to this field during the 20th century, including the works of Wiener and Kalman, but it does so in an original and novel manner that paves the way for further developments. This book contains a large collection of problems that complement it and are an important part of piece, in addition to numerous sections that offer interesting historical accounts and insights. The book also includes several results that appear in print for the first time. FEATURES/BENEFITS Takes a geometric point of view. Emphasis on the numerically favored array forms of many algorithms. Emphasis on equivalence and duality concepts for the solution of several related problems in adaptive filtering, estimation, and control. These features are generally absent in most prior treatments, ostensibly on the grounds that they are too abstract and complicated. It is the authors' hope that these misconceptions will be dispelled by the presentation herein, and that the fundamental simplicity and power of these ideas will be more widely recognized and exploited. Among other things, these features already yielded new insights and new results for linear and nonlinear problems in areas such as adaptive filtering, quadratic control, and estimation, including the recent Hà theories. |
applied optimal estimation: Applied Optimal Control Arthur Earl Bryson, Yu-Chi Ho, 1969 |
applied optimal estimation: Estimation and Control of Dynamical Systems Alain Bensoussan, 2018-05-23 This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong. |
applied optimal estimation: Bayesian Filtering and Smoothing Simo Särkkä, 2013-09-05 A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. |
applied optimal estimation: Discrete Choice Methods with Simulation Kenneth Train, 2009-07-06 This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing. |
applied optimal estimation: Stochastic Processes, Estimation, and Control Jason L. Speyer, Walter H. Chung, 2008-01-01 Uncertainty and risk are integral to engineering because real systems have inherent ambiguities that arise naturally or due to our inability to model complex physics. The authors discuss probability theory, stochastic processes, estimation, and stochastic control strategies and show how probability can be used to model uncertainty in control and estimation problems. The material is practical and rich in research opportunities. |
applied optimal estimation: Inverse Methods for Atmospheric Sounding Clive D. Rodgers, 2000 Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR. |
applied optimal estimation: Microeconometrics A. Colin Cameron, Pravin K. Trivedi, 2005-05-09 This book provides the most comprehensive treatment to date of microeconometrics, the analysis of individual-level data on the economic behavior of individuals or firms using regression methods for cross section and panel data. The book is oriented to the practitioner. A basic understanding of the linear regression model with matrix algebra is assumed. The text can be used for a microeconometrics course, typically a second-year economics PhD course; for data-oriented applied microeconometrics field courses; and as a reference work for graduate students and applied researchers who wish to fill in gaps in their toolkit. Distinguishing features of the book include emphasis on nonlinear models and robust inference, simulation-based estimation, and problems of complex survey data. The book makes frequent use of numerical examples based on generated data to illustrate the key models and methods. More substantially, it systematically integrates into the text empirical illustrations based on seven large and exceptionally rich data sets. |
applied optimal estimation: Nonlinear Estimation Shovan Bhaumik, Paresh Date, 2019-07-24 Nonlinear Estimation: Methods and Applications with Deterministic Sample Points focusses on a comprehensive treatment of deterministic sample point filters (also called Gaussian filters) and their variants for nonlinear estimation problems, for which no closed-form solution is available in general. Gaussian filters are becoming popular with the designers due to their ease of implementation and real time execution even on inexpensive or legacy hardware. The main purpose of the book is to educate the reader about a variety of available nonlinear estimation methods so that the reader can choose the right method for a real life problem, adapt or modify it where necessary and implement it. The book can also serve as a core graduate text for a course on state estimation. The book starts from the basic conceptual solution of a nonlinear estimation problem and provides an in depth coverage of (i) various Gaussian filters such as the unscented Kalman filter, cubature and quadrature based filters, Gauss-Hermite filter and their variants and (ii) Gaussian sum filter, in both discrete and continuous-discrete domain. Further, a brief description of filters for randomly delayed measurement and two case-studies are also included. Features: The book covers all the important Gaussian filters, including filters with randomly delayed measurements. Numerical simulation examples with detailed matlab code are provided for most algorithms so that beginners can verify their understanding. Two real world case studies are included: (i) underwater passive target tracking, (ii) ballistic target tracking. The style of writing is suitable for engineers and scientists. The material of the book is presented with the emphasis on key ideas, underlying assumptions, algorithms, and properties. The book combines rigorous mathematical treatment with matlab code, algorithm listings, flow charts and detailed case studies to deepen understanding. |
applied optimal estimation: Optimal Transport for Applied Mathematicians Filippo Santambrogio, 2015-10-17 This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource. |
applied optimal estimation: Optimal Filtering Brian D. O. Anderson, John B. Moore, 2005-01-05 This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research. Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects encompass applications in nonlinear filtering; innovations representations, spectral factorization, and Wiener and Levinson filtering; parameter identification and adaptive estimation; and colored noise and suboptimal reduced order filters. Each chapter concludes with references, and four appendixes contain useful supplementary material. |
applied optimal estimation: Applied Linear Statistical Models with Student CD Michael Kutner, Christopher Nachtsheim, John Neter, William Li, 2004-08-10 Applied Linear Statistical Models 5e is the long established leading authoritative text and reference on statistical modeling, analysis of variance, and the design of experiments. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text proceeds through linear and nonlinear regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and Comments to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, projects, and case studies are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and the use of automated software without loss of understanding. |
applied optimal estimation: Autonomous Robot Vehicles Ingemar J. Cox, Gordon T. Wilfong, 2012-12-06 Autonomous robot vehicles are vehicles capable of intelligent motion and action without requiring either a guide or teleoperator control. The recent surge of interest in this subject will grow even grow further as their potential applications increase. Autonomous vehicles are currently being studied for use as reconnaissance/exploratory vehicles for planetary exploration, undersea, land and air environments, remote repair and maintenance, material handling systems for offices and factories, and even intelligent wheelchairs for the disabled. This reference is the first to deal directly with the unique and fundamental problems and recent progress associated with autonomous vehicles. The editors have assembled and combined significant material from a multitude of sources, and, in effect, now conviniently provide a coherent organization to a previously scattered and ill-defined field. |
applied optimal estimation: Probabilistic Inequalities George A Anastassiou, 2009-08-11 In this monograph, the author presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. These are built on the recent classical form of real analysis inequalities which are also discussed in full details. This treatise is the culmination and crystallization of the author's last two decades of research work in related discipline. Each of the chapters is self-contained and a few advanced courses can be taught out of this book. Extensive background and motivations for specific topics are given in each chapter. A very extensive list of references is also provided at the end.The topics covered in this unique book are wide-ranging and diverse. The opening chapters examine the probabilistic Ostrowski type inequalities, and various related ones, as well as the largely discusses about the Grothendieck type probabilistic inequalities. The book is also about inequalities in information theory and the Csiszar's f-Divergence between probability measures. A great section of the book is also devoted to the applications in various directions of Geometry Moment Theory. Also, the development of the Grüss type and Chebyshev-Grüss type inequalities for Stieltjes integrals and the applications in probability are explored in detail. The final chapters discuss the important real analysis methods with potential applications to stochastics. The book will be of interest to researchers and graduate students, and it is also seen as an invaluable reference book to be acquired by all science libraries as well as seminars that conduct discussions on related topics. |
applied optimal estimation: Directions in Mathematical Systems Theory and Optimization Anders Rantzer, Christopher I. Byrnes, 2002-11-05 For more than three decades, Anders Lindquist has delivered fundamental cont- butions to the ?elds of systems, signals and control. Throughout this period, four themes can perhaps characterize his interests: Modeling, estimation and ?ltering, feedback and robust control. His contributions to modeling include seminal work on the role of splitting subspaces in stochastic realization theory, on the partial realization problem for both deterministic and stochastic systems, on the solution of the rational covariance extension problem and on system identi?cation. His contributions to ?ltering and estimation include the development of fast ?ltering algorithms, leading to a nonlinear dynamical system which computes spectral factors in its steady state, and which provide an alternate, linear in the dimension of the state space, to computing the Kalman gain from a matrix Riccati equation. His further research on the phase portrait of this dynamical system gave a better understanding of when the Kalman ?lter will converge, answering an open question raised by Kalman. While still a student he established the separation principle for stochastic function differential equations, including some fundamental work on optimal control for stochastic systems with time lags. He continued his interest in feedback control by deriving optimal and robust control feedback laws for suppressing the effects of harmonic disturbances. Moreover, his recent work on a complete parameterization of all rational solutions to the Nevanlinna-Pick problem is providing a new approach to robust control design. |
Applied | Homepage
At Applied ®, we are proud of our rich heritage built on a strong foundation of quality brands, comprehensive …
APPLIED Definition & Meaning - Merriam-Webster
The meaning of APPLIED is put to practical use; especially : applying general principles to solve definite …
Applied - definition of applied by The Free Dictionary
Define applied. applied synonyms, applied pronunciation, applied translation, English dictionary …
APPLIED Definition & Meaning | Dictionary.com
Applied definition: having a practical purpose or use; derived from or involved with actual phenomena …
Applied Optics Inc in Hillsborough, NC 27278 - 91…
About Applied Optics Inc Applied Optics Inc is located at 505 Meadowlands Dr STE 107 in Hillsborough, North …
Applied | Homepage
At Applied ®, we are proud of our rich heritage built on a strong foundation of quality brands, comprehensive solutions, dedicated customer service, sound ethics and a commitment to our …
APPLIED Definition & Meaning - Merriam-Webster
The meaning of APPLIED is put to practical use; especially : applying general principles to solve definite problems. How to use applied in a sentence.
Applied - definition of applied by The Free Dictionary
Define applied. applied synonyms, applied pronunciation, applied translation, English dictionary definition of applied. adj. Put into practice or to a particular use ...
APPLIED Definition & Meaning | Dictionary.com
Applied definition: having a practical purpose or use; derived from or involved with actual phenomena (theoretical,pure ).. See examples of APPLIED used in a sentence.
Applied Optics Inc in Hillsborough, NC 27278 - 919-245...
About Applied Optics Inc Applied Optics Inc is located at 505 Meadowlands Dr STE 107 in Hillsborough, North Carolina 27278. Applied Optics Inc can be contacted via phone at 919-245 …
Applied or Applyed – Which is Correct? - Two Minute English
Feb 18, 2025 · Which is the Correct Form Between "Applied" or "Applyed"? Think about when you’ve cooked something. If you used a recipe, you followed specific steps. We can think of …
APPLIED definition and meaning | Collins English Dictionary
Related to or put to practical use → Compare pure (sense 5).... Click for English pronunciations, examples sentences, video.
applied adjective - Definition, pictures, pronunciation and usage …
Definition of applied adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
applied - WordReference.com Dictionary of English
ap•plied (ə plīd′), adj. having a practical purpose or use; derived from or involved with actual phenomena (distinguished from theoretical, opposed to pure): applied mathematics; applied …
applied - Wiktionary, the free dictionary
Feb 11, 2025 · applied (not comparable) Put into practical use. Of a branch of science, serving another branch of science or engineering. Antonym: pure