Applications Of Lie Groups To Differential Equations

Advertisement



  applications of lie groups to differential equations: Applications of Lie Groups to Differential Equations Peter J. Olver, 1993 A solid introduction to applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented such that graduates and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory, with many of the topics presented in a novel way, emphasising explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
  applications of lie groups to differential equations: Applications of Lie Groups to Difference Equations Vladimir Dorodnitsyn, 2010-12-01 Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods
  applications of lie groups to differential equations: Symmetry Methods for Differential Equations Peter E. Hydon, 2000-02-13 A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction to the subject for applied mathematicians, physicists, and engineers. The informal presentation uses many worked examples to illustrate the major symmetry methods. Written at a level suitable for postgraduates and advanced undergraduates, the text will enable readers to master the main techniques quickly and easily. The book contains some methods not previously published in a text, including those methods for obtaining discrete symmetries and integrating factors.
  applications of lie groups to differential equations: Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics D.H. Sattinger, O.L. Weaver, 2013-11-11 This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselvesto the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.
  applications of lie groups to differential equations: Symmetries, Differential Equations and Applications Victor G. Kac, Peter J. Olver, Pavel Winternitz, Teoman Özer, 2018-11-04 Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether’s Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance.
  applications of lie groups to differential equations: Applications of Lie's Theory of Ordinary and Partial Differential Equations Lawrence Dresner, 1999 Lie's group theory of differential equations unifies the many ad hoc methods known for solving differential equations and provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations and is not restricted to linear equations. This textbook provides a concise, simple introduction to the application of Lie's theory to the solution of differential equations. The author emphasises clarity and immediacy of understanding rather than encyclopaedic completeness, rigour and generality. This enables readers quickly to grasp the essentials and start applying the methods to find solutions. Worked examples and problems are drawn from differential equations met in a wide range of scientific and engineering fields.
  applications of lie groups to differential equations: Lie Groups, Lie Algebras, and Some of Their Applications Robert Gilmore, 2006-01-04 An opening discussion of introductory concepts leads to explorations of the classical groups, continuous groups and Lie groups, and Lie groups and Lie algebras. Some simple but illuminating examples are followed by examinations of classical algebras, Lie algebras and root spaces, root spaces and Dynkin diagrams, real forms, and contractions and expansions.
  applications of lie groups to differential equations: Lectures on Selected Topics in Mathematical Physics William A. Schwalm, 2017-05-02 This book provides an introduction to Lie Theory for first year graduate students and professional physicists who may not have across the theory in their studies. In particular, it is a summary overview of the theory of finite groups, a brief description of a manifold, and then an informal development of the theory of one-parameter Lie groups, especially as they apply to ordinary differential equations. The treatment is informal, but systematic and reasonably self-contained, as it assumes a familiarity with basic physics and applied calculus, but it does not assume additional mathematical training. Interested readers should have a fair chance of finding symmetries of a second order differential equation and should be able to use it to reduce the order of the differential equation.
  applications of lie groups to differential equations: Elementary Lie Group Analysis and Ordinary Differential Equations Nailʹ Khaĭrullovich Ibragimov, 1999
  applications of lie groups to differential equations: Problems And Solutions For Groups, Lie Groups, Lie Algebras With Applications Willi-hans Steeb, Yorick Hardy, Igor Tanski, 2012-04-26 The book presents examples of important techniques and theorems for Groups, Lie groups and Lie algebras. This allows the reader to gain understandings and insights through practice. Applications of these topics in physics and engineering are also provided. The book is self-contained. Each chapter gives an introduction to the topic.
  applications of lie groups to differential equations: Continuous Symmetries, Lie Algebras, Differential Equations And Computer Algebra (2nd Edition) Willi-hans Steeb, 2007-07-26 This textbook comprehensively introduces students and researchers to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. Covering all the modern techniques in detail, it relates applications to cutting-edge research fields such as Yang-Mills theory and string theory.Aimed at readers in applied mathematics and physics rather than pure mathematics, the material is ideally suited to students and researchers whose main interest lies in finding solutions to differential equations and invariants of maps.A large number of worked examples and challenging exercises help readers to work independently of teachers, and by including SymbolicC++ implementations of the techniques in each chapter, the book takes full advantage of the advancements in algebraic computation.Twelve new sections have been added in this edition, including: Haar measure, Sato's theory and sigma functions, universal algebra, anti-self dual Yang-Mills equation, and discrete Painlevé equations.
  applications of lie groups to differential equations: Symmetry Analysis of Differential Equations with Mathematica® Gerd Baumann, 2000-04-20 The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary MathLie software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.
  applications of lie groups to differential equations: Lie Symmetry Analysis of Fractional Differential Equations Mir Sajjad Hashemi, Dumitru Baleanu, 2020-07-09 The trajectory of fractional calculus has undergone several periods of intensive development, both in pure and applied sciences. During the last few decades fractional calculus has also been associated with the power law effects and its various applications. It is a natural to ask if fractional calculus, as a nonlocal calculus, can produce new results within the well-established field of Lie symmetries and their applications. In Lie Symmetry Analysis of Fractional Differential Equations the authors try to answer this vital question by analyzing different aspects of fractional Lie symmetries and related conservation laws. Finding the exact solutions of a given fractional partial differential equation is not an easy task, but is one that the authors seek to grapple with here. The book also includes generalization of Lie symmetries for fractional integro differential equations. Features Provides a solid basis for understanding fractional calculus, before going on to explore in detail Lie Symmetries and their applications Useful for PhD and postdoc graduates, as well as for all mathematicians and applied researchers who use the powerful concept of Lie symmetries Filled with various examples to aid understanding of the topics
  applications of lie groups to differential equations: Lie Groups, Physics, and Geometry Robert Gilmore, 2008
  applications of lie groups to differential equations: Integrable Systems, Quantum Groups, and Quantum Field Theories Alberto Ibort, M.A. Rodríguez, 2012-12-06 In many ways the last decade has witnessed a surge of interest in the interplay between theoretical physics and some traditional areas of pure mathematics. This book contains the lectures delivered at the NATO-ASI Summer School on `Recent Problems in Mathematical Physics' held at Salamanca, Spain (1992), offering a pedagogical and updated approach to some of the problems that have been at the heart of these events. Among them, we should mention the new mathematical structures related to integrability and quantum field theories, such as quantum groups, conformal field theories, integrable statistical models, and topological quantum field theories, that are discussed at length by some of the leading experts on the areas in several of the lectures contained in the book. Apart from these, traditional and new problems in quantum gravity are reviewed. Other contributions to the School included in the book range from symmetries in partial differential equations to geometrical phases in quantum physics. The book is addressed to researchers in the fields covered, PhD students and any scientist interested in obtaining an updated view of the subjects.
  applications of lie groups to differential equations: Applications of Symmetry Methods to Partial Differential Equations George W. Bluman, Alexei F. Cheviakov, Stephen Anco, 2009-10-30 This is an acessible book on the advanced symmetry methods for differential equations, including such subjects as conservation laws, Lie-Bäcklund symmetries, contact transformations, adjoint symmetries, Nöther's Theorem, mappings with some modification, potential symmetries, nonlocal symmetries, nonlocal mappings, and non-classical method. Of use to graduate students and researchers in mathematics and physics.
  applications of lie groups to differential equations: Stochastic Models, Information Theory, and Lie Groups, Volume 1 Gregory S. Chirikjian, 2009-09-02 This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.
  applications of lie groups to differential equations: Symmetry and Integration Methods for Differential Equations George Bluman, Stephen C. Anco, 2002-07-10 This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.
  applications of lie groups to differential equations: Lie Groups Luiz A. B. San Martin, 2021-02-23 This textbook provides an essential introduction to Lie groups, presenting the theory from its fundamental principles. Lie groups are a special class of groups that are studied using differential and integral calculus methods. As a mathematical structure, a Lie group combines the algebraic group structure and the differentiable variety structure. Studies of such groups began around 1870 as groups of symmetries of differential equations and the various geometries that had emerged. Since that time, there have been major advances in Lie theory, with ramifications for diverse areas of mathematics and its applications. Each chapter of the book begins with a general, straightforward introduction to the concepts covered; then the formal definitions are presented; and end-of-chapter exercises help to check and reinforce comprehension. Graduate and advanced undergraduate students alike will find in this book a solid yet approachable guide that will help them continue their studies with confidence.
  applications of lie groups to differential equations: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians Andrea Bonfiglioli, Ermanno Lanconelli, Francesco Uguzzoni, 2007-08-24 This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
  applications of lie groups to differential equations: Applications of the Theory of Groups in Mechanics and Physics Petre P. Teodorescu, Nicolae-A.P. Nicorovici, 2004-04-30 The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.
  applications of lie groups to differential equations: Algorithmic Lie Theory for Solving Ordinary Differential Equations Fritz Schwarz, 2007-10-02 Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonlinear ordinary differential equations (ODEs), it was rarely used for practical problems because of the massive amount of calculations involved. But with the advent of computer algebra programs, it became possible to apply Lie theory to concrete proble
  applications of lie groups to differential equations: Similarity Solutions of Nonlinear Partial Differential Equations Lawrence Dresner, 1983
  applications of lie groups to differential equations: Differential Geometry and Lie Groups Jean Gallier, Jocelyn Quaintance, 2020-08-18 This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.
  applications of lie groups to differential equations: The Structure of Complex Lie Groups Dong Hoon Lee, 2001-08-31 Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts
  applications of lie groups to differential equations: Equivalence, Invariants and Symmetry Peter J. Olver, 2009-02-05 This book presents an innovative synthesis of methods used to study the problems of equivalence and symmetry that arise in a variety of mathematical fields and physical applications. It draws on a wide range of disciplines, including geometry, analysis, applied mathematics, and algebra. Dr. Olver develops systematic and constructive methods for solving equivalence problems and calculating symmetries, and applies them to a variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials, and differential operators. He emphasizes the construction and classification of invariants and reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and related fields.
  applications of lie groups to differential equations: Essays in the History of Lie Groups and Algebraic Groups Armand Borel, 2001 Algebraic groups and Lie groups are important in most major areas of mathematics, occuring in diverse roles such as the symmetries of differential equations and as central figures in the Langlands program for number theory. In this book, Professor Borel looks at the development of the theory of Lie groups and algebraic groups, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. As the starting point of this passagefrom local to global, the author takes Lie's theory of local analytic transformation groups and Lie algebras. He then follows the globalization of the process in its two most important frameworks: (transcendental) differential geometry and algebraic geometry. Chapters II to IV are devoted to the former,Chapters V to VIII, to the latter.The essays in the first part of the book survey various proofs of the full reducibility of linear representations of $SL 2M$, the contributions H. Weyl to representation and invariant theory for Lie groups, and conclude with a chapter on E. Cartan's theory of symmetric spaces and Lie groups in the large.The second part of the book starts with Chapter V describing the development of the theory of linear algebraic groups in the 19th century. Many of the main contributions here are due to E. Study, E. Cartan, and above all, to L. Maurer. After being abandoned for nearly 50 years, the theory was revived by Chevalley and Kolchin and then further developed by many others. This is the focus of Chapter VI. The book concludes with two chapters on various aspects of the works of Chevalley on Lie groupsand algebraic groups and Kolchin on algebraic groups and the Galois theory of differential fields.The author brings a unique perspective to this study. As an important developer of some of the modern elements of both the differential geometric and the algebraic geometric sides of the theory, he has a particularly deep appreciation of the underlying mathematics. His lifelong involvement and his historical research in the subject give him a special appreciation of the story of its development.
  applications of lie groups to differential equations: Galois' Theory Of Algebraic Equations (Second Edition) Jean-pierre Tignol, 2015-12-28 The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.
  applications of lie groups to differential equations: CRC Handbook of Lie Group Analysis of Differential Equations Nail H. Ibragimov, 1994-11-28 Volume 2 offers a unique blend of classical results of Sophus Lie with new, modern developments and numerous applications which span a period of more than 100 years. As a result, this reference is up to date, with the latest information on the group theoretic methods used frequently in mathematical physics and engineering. Volume 2 is divided into three parts. Part A focuses on relevant definitions, main algorithms, group classification schemes for partial differential equations, and multifaceted possibilities offered by Lie group theoretic philosophy. Part B contains the group analysis of a variety of mathematical models for diverse natural phenomena. It tabulates symmetry groups and solutions for linear equations of mathematical physics, classical field theory, viscous and non-Newtonian fluids, boundary layer problems, Earth sciences, elasticity, plasticity, plasma theory (Vlasov-Maxwell equations), and nonlinear optics and acoustics. Part C offers an English translation of Sophus Lie's fundamental paper on the group classification and invariant solutions of linear second-order equations with two independent variables. This will serve as a concise, practical guide to the group analysis of partial differential equations.
  applications of lie groups to differential equations: Geometric Methods in System Theory D.Q. Mayne, R.W. Brockett, 2012-12-06 Geometric Methods in System Theory In automatic control there are a large number of applications of a fairly simple type for which the motion of the state variables is not free to evolve in a vector space but rather must satisfy some constraints. Examples are numerous; in a switched, lossless electrical network energy is conserved and the state evolves on an ellipsoid surface defined by x'Qx equals a constant; in the control of finite state, continuous time, Markov processes the state evolves on the set x'x = 1, xi ~ O. The control of rigid body motions and trajectory control leads to problems of this type. There has been under way now for some time an effort to build up enough control theory to enable one to treat these problems in a more or less routine way. It is important to emphasise that the ordinary vector space-linear theory often gives the wrong insight and thus should not be relied upon.
  applications of lie groups to differential equations: An Introduction to Lie Groups and the Geometry of Homogeneous Spaces Andreas Arvanitogeōrgos, 2003 It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics.
  applications of lie groups to differential equations: Group Analysis of Differential Equations L. V. Ovsiannikov, 2014-05-10 Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations. This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the given differential equation with a known admitted group. The theory of differential invariants that is developed on an infinitesimal basis is elaborated in Chapter VII. The last chapter outlines the ways in which the methods of group analysis are used in special issues involving differential equations. This publication is a good source for students and specialists concerned with areas in which ordinary and partial differential equations play an important role.
  applications of lie groups to differential equations: Functional Analysis, Sobolev Spaces and Partial Differential Equations Haim Brezis, 2010-11-10 This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
  applications of lie groups to differential equations: Differential Geometry and Lie Groups for Physicists Marián Fecko, 2011-03-03 Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
  applications of lie groups to differential equations: Lie Groups and Algebraic Groups Arkadij L. Onishchik, Ernest B. Vinberg, 2012-12-06 This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar Sophus Lie [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: Lie groups and Real semisimple Lie groups. Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
  applications of lie groups to differential equations: The Method of Equivalence and Its Applications Robert B. Gardner, 1989-01-01 The ideas of Elie Cartan are combined with the tools of Felix Klein and Sophus Lie to present in this book the only detailed treatment of the method of equivalence. An algorithmic description of this method, which finds invariants of geometric objects under infinite dimensional pseudo-groups, is presented for the first time. As part of the algorithm, Gardner introduces several major new techniques. In particular, the use of Cartan's idea of principal components that appears in his theory of Repere Mobile, and the use of Lie algebras instead of Lie groups, effectively a linear procedure, provide a tremendous simplification. One must, however, know how to convert from one to the other, and the author provides the Rosetta stone to accomplish this. In complex problems, it is essential to be able to identify natural blocks in group actions and not just individual elements, and prior to this publication, there was no reference to block matrix techniques. The Method of Equivalence and Its Applications details ten diverse applications including Lagrangian field theory, control theory, ordinary differential equations, and Riemannian and conformal geometry. This volume contains a series of lectures, the purpose of which was to describe the equivalence algorithm and to show, in particular, how it is applied to several pedagogical examples and to a problem in control theory called state estimation of plants under feedback. The lectures, and hence the book, focus on problems in real geometry.
  applications of lie groups to differential equations: Symmetries and Differential Equations George Bluman, Sukeyuki Kumei, 1996-04-25 A major portion of this book discusses work which has appeared since the publication of the book Similarity Methods for Differential Equations, Springer-Verlag, 1974, by the first author and J.D. Cole. The present book also includes a thorough and comprehensive treatment of Lie groups of tranformations and their various uses for solving ordinary and partial differential equations. No knowledge of group theory is assumed. Emphasis is placed on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This book should be particularly suitable for physicists, applied mathematicians, and engineers. Almost all of the examples are taken from physical and engineering problems including those concerned with heat conduction, wave propagation, and fluid flows. A preliminary version was used as lecture notes for a two-semester course taught by the first author at the University of British Columbia in 1987-88 to graduate and senior undergraduate students in applied mathematics and physics. Chapters 1 to 4 encompass basic material. More specialized topics are covered in Chapters 5 to 7.
  applications of lie groups to differential equations: Maple in Mathematics Education and Research Jürgen Gerhard, Ilias Kotsireas, 2020-02-27 This book constitutes the refereed proceedings of the third Maple Conference, MC 2019, held in Waterloo, Ontario, Canada, in October 2019. The 21 revised full papers and 9 short papers were carefully reviewed and selected out of 37 submissions, one invited paper is also presented in the volume. The papers included in this book cover topics in education, algorithms, and applciations of the mathematical software Maple.
  applications of lie groups to differential equations: Introduction to Partial Differential Equations Peter J. Olver, 2013-11-08 This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.
My Apps
Access and manage all your Microsoft apps and services in one place with My Apps.

My Apps
Welcome to Maloney Properties official login page. Please sign in with your Maloney email address....

My Apps
Access and manage your Microsoft applications securely with one sign-in through My Apps.

My Apps
My Apps is a secure and convenient way to access and manage your Microsoft applications with one sign-in.

My Apps
Sign in to access and manage your Microsoft applications securely and conveniently with one sign-in.

My Apps
Access and manage all your Microsoft apps and services securely in one place with My Apps.

My Apps
Sign in to access and manage your applications from the My Apps portal.

My Apps
Please use your username to login (e.g. @edg.com.au or @stores.bws.com.au or @alhgroup.com.au). If you need to reset your password, please go to Single Sign On Portal ...

My Apps
If you need help accessing your account, contact the IT Help Desk

My Apps
Weitere Informationen und Hilfen zur Einrichtung und Nutzung der Schul-ID Hessen finden Sie unter https://schulid.hessen.de.. Datenschutzerklärung der Schul-ID Hessen

My Apps
Access and manage all your Microsoft apps and services in one place with My Apps.

My Apps
Welcome to Maloney Properties official login page. Please sign in with your Maloney email address....

My Apps
Access and manage your Microsoft applications securely with one sign-in through My Apps.

My Apps
My Apps is a secure and convenient way to access and manage your Microsoft applications with one sign-in.

My Apps
Sign in to access and manage your Microsoft applications securely and conveniently with one sign-in.

My Apps
Access and manage all your Microsoft apps and services securely in one place with My Apps.

My Apps
Sign in to access and manage your applications from the My Apps portal.

My Apps
Please use your username to login (e.g. @edg.com.au or @stores.bws.com.au or @alhgroup.com.au). If you need to reset your password, please go to Single Sign On Portal ...

My Apps
If you need help accessing your account, contact the IT Help Desk

My Apps
Weitere Informationen und Hilfen zur Einrichtung und Nutzung der Schul-ID Hessen finden Sie unter https://schulid.hessen.de.. Datenschutzerklärung der Schul-ID Hessen