Analytic Geometry

Advertisement



  analytic geometry: History of Analytic Geometry Carl B. Boyer, 2004-11-29 This study presents the concepts and contributions from before the Alexandrian Age through to Fermat and Descartes, and on through Newton and Euler to the Golden Age, from 1789 to 1850. 1956 edition. Analytical bibliography. Index.
  analytic geometry: Algebraic and Analytic Geometry Amnon Neeman, 2007-09-13 Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.
  analytic geometry: Rigid Analytic Geometry and Its Applications Jean Fresnel, Marius van der Put, 2003-11-06 Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, points of rigid spaces, étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
  analytic geometry: Calculus and Analytic Geometry Abraham Schwartz, 1974
  analytic geometry: Calculus and Analytic Geometry J. Douglas Faires, Barbara Trader Faires, 1983
  analytic geometry: Analytic Geometry Ross Raymond Middlemiss, John L. Marks, James R. Smart, 1968
  analytic geometry: Analytic Geometry A. C. Burdette, 2014-05-10 Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus. This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes. This book will prove useful to undergraduate trigonometric students.
  analytic geometry: Exploring Analytic Geometry with Mathematica Donald L. Vossler, 2000 The study of two-dimensional analytic geometry has gone in and out of fashion several times over the past century, however this classic field of mathematics has once again become popular due to the growing power of personal computers and the availability of powerful mathematical software systems, such as Mathematica, that can provide an interactive environment for studying the field. By combining the power of Mathematica with an analytic geometry software system called Descarta2D, the author has succeeded in meshing an ancient field of study with modern computational tools, the result being a simple, yet powerful, approach to studying analytic geometry. Students, engineers and mathematicians alike who are interested in analytic geometry can use this book and software for the study, research or just plain enjoyment of analytic geometry. Mathematica provides an attractive environment for studying analytic geometry. Mathematica supports both numeric and symbolic computations meaning that geometry problems can be solved for special cases using numbers, as well as general cases producing formulas. Mathematica also has good facilities for producing graphical plots which are useful for visualizing the graphs of two-dimensional geometry. * A classic study in analytic geometry, complete with in-line Mathematica dialogs illustrating every concept as it is introduced * Excellent theoretical presentation *Fully explained examples of all key concepts * Interactive Mathematica notebooks for the entire book * Provides a complete computer-based environment for study of analytic geometry * All chapters and reference material are provided on CD-ROM in addition to being printedin the book * Complete software system: Descarta2D * A software system, including source code, for the underlying computer implementation, called Descarta2D is provided * Part VII of the book is a listing of the (30) Mathematica files supporting Descarta2D; the source code is also supplied on CD-ROM * Explorations * More than 120 challenging problems in analytic geometry are posed; Complete solutions are provided both as interactive Mathematica notebooks on CD-ROM and as printed material in the book * Mathematica and Descarta2D Hints expand the reader's knowledge and understanding of Descarta2D and Mathematica * Sortware developed with Mathematica 3.0 and is compatible with Mathematica 4.0 * Detailed reference manual * Complete documentation for Descarta2D * Fully integrated into the Mathematica Help Browser
  analytic geometry: Local Analytic Geometry Theo De Jong, Gerhard Pfister, 2014-01-15
  analytic geometry: History of Analytic Geometry Carl B. Boyer, 2012-06-28 This study presents the concepts and contributions from before the Alexandrian Age through to Fermat and Descartes, and on through Newton and Euler to the Golden Age, from 1789 to 1850. 1956 edition. Analytical bibliography. Index.
  analytic geometry: Calculus with Analytic Geometry Charles Henry Edwards, David E. Penney, 1998 Adopted by Rowan/Salisbury Schools.
  analytic geometry: Calculus with Analytic Geometry Murray H. Protter, Philip E. Protter, 1988
  analytic geometry: Modern Calculus and Analytic Geometry Richard A. Silverman, 2014-04-15 A self-contained text for an introductory course, this volume places strong emphasis on physical applications. Key elements of differential equations and linear algebra are introduced early and are consistently referenced, all theorems are proved using elementary methods, and numerous worked-out examples appear throughout. The highly readable text approaches calculus from the student's viewpoint and points out potential stumbling blocks before they develop. A collection of more than 1,600 problems ranges from exercise material to exploration of new points of theory — many of the answers are found at the end of the book; some of them worked out fully so that the entire process can be followed. This well-organized, unified text is copiously illustrated, amply cross-referenced, and fully indexed.
  analytic geometry: Calculus and Analytic Geometry Waleffe, Thomas, 2000-08-01
  analytic geometry: Introduction to Complex Analytic Geometry Stanislaw Lojasiewicz, 2013-03-09 facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches (§2). The role played by the ring 0 A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on re movable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7).
  analytic geometry: Calculus and Analytic Geometry Al Shenk, 1988
  analytic geometry: Technical Calculus with Analytic Geometry Judith L. Gersting, 2012-06-14 Well-conceived text with many special features covers functions and graphs, straight lines and conic sections, new coordinate systems, the derivative, much more. Many examples, exercises, practice problems, with answers. Advanced undergraduate/graduate-level. 1984 edition.
  analytic geometry: A Treatise on the Analytic Geometry of Three Dimensions George Salmon, 1862
  analytic geometry: Modern Analytic Geometry William Wooton, Edwin Ford Beckenbach, Frank J. Fleming, 1972
  analytic geometry: Contributions to Complex Analysis and Analytic Geometry Henri Skoda, Jean-Marie Trépreau, 2013-08-13
  analytic geometry: Linear Algebra and Analytic Geometry for Physical Sciences Giovanni Landi, Alessandro Zampini, 2018-05-22 A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.
  analytic geometry: Elementary Functions and Analytic Geometry Harley Flanders, 2014-05-10 Elementary Functions and Analytic Geometry is an introduction to college mathematics, with emphasis on elementary functions and analytic geometry. It aims to provide a working knowledge of basic functions (polynomial, rational, exponential, logarithmic, and trigonometric); graphing techniques and the numerical aspects and applications of functions; two- and three-dimensional vector methods; and complex numbers, mathematical induction, and the binomial theorem. Comprised of 13 chapters, this book begins with a discussion on functions and graphs, paying particular attention to quantities measured in the real number system. The next chapter deals with linear and quadratic functions as well as some of their applications. Tips on graphing are offered. Subsequent chapters focus on polynomial functions, along with graphs of factored polynomials; rational functions; exponential and logarithm functions; and trigonometric functions. Identities and inverse functions, vectors, and trigonometry are also explored, together with complex numbers and solid analytic geometry. The book concludes by considering mathematical induction, binomial coefficients, and the binomial theorem. This monograph will be a useful resource for undergraduate students of mathematics and algebra.
  analytic geometry: An Elementary Course in Analytic Geometry John Henry Tanner, Joseph Allen, 1898
  analytic geometry: Lectures on Formal and Rigid Geometry Siegfried Bosch, 2014-08-22 The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center Geometrical Structures in Mathematics.
  analytic geometry: The Calculus with Analytic Geometry Handbook Jason R. Taylor, 1976
  analytic geometry: Calculus, with Analytic Geometry Howard E. Campbell, Paul F. Dierker, 1982
  analytic geometry: A Treatise on Analytic Geometry George Holmes Howison, Joseph Ray, 1869
  analytic geometry: Complex Numbers, Vector Algebra and Analytic Geometry Геннадий Куповых, Дмитрий Тимошенко, Валерий Мнухин, 2023-01-12 Пособие предназначено для студентов направлений 01.03.02,02.03.03,09.03.01, 09.03.02, 09.03.03, 09.03.04, 10.03.01, 27.03.03, 09.05.01, 10.05.02, 10.05.03, 10.05.05, изучающих курс «Математика (Mathematics)» на английском языке, и существенно дополняет пособие тех же авторов: Mnukhin, V.B., Kupovykh G.V., Timoshenko, D.V. Linear Algebra. / South Federal University. – 2018. – 112 pp. ISBN: 978-5-9275-3088-5. Пособие состоит из трёх глав, состоящих из разделов, разделенных на секции. Каждая из глав завершается рядом задач и упражнений, направленных на закрепление изученного материала.
  analytic geometry: Algebraic and Analytic Geometry of Fans Carlos Andradas, Jesús M. Ruiz, 1995 A set which can be defined by systems of polynomial inequalities is called semialgebraic. When such a description is possible locally around every point, by means of analytic inequalities varying with the point, the set is called semianalytic. If one single system of strict inequalities is enough, either globally or locally at every point, the set is called basic. The topic of this work is the relationship between these two notions. Namely, Andradas and Ruiz describe and characterize, both algebraically and geometrically, the obstructions for a basic semianalytic set to be basic semialgebraic. Then they describe a special family of obstructions that suffices to recognize whether or not a basic semianalytic set is basic semialgebraic. Finally, they use the preceding results to discuss the effect on basicness of birational transformations.
  analytic geometry: Topics in Global Real Analytic Geometry Francesca Acquistapace, Fabrizio Broglia, José F. Fernando, 2022-06-07 In the first two chapters we review the theory developped by Cartan, Whitney and Tognoli. Then Nullstellensatz is proved both for Stein algebras and for the algebra of real analytic functions on a C-analytic space. Here we find a relation between real Nullstellensatz and seventeenth Hilbert’s problem for positive semidefinite analytic functions. Namely, a positive answer to Hilbert’s problem implies a solution for the real Nullstellensatz more similar to the one for real polinomials. A chapter is devoted to the state of the art on this problem that is far from a complete answer. In the last chapter we deal with inequalities. We describe a class of semianalytic sets defined by countably many global real analytic functions that is stable under topological properties and under proper holomorphic maps between Stein spaces, that is, verifies a direct image theorem. A smaller class admits also a decomposition into irreducible components as it happens for semialgebraic sets. During the redaction some proofs have been simplified with respect to the original ones.
  analytic geometry: A Text-book of Analytic Geometry James Mills Peirce, 1857
  analytic geometry: A Gyrovector Space Approach to Hyperbolic Geometry Abraham Ungar, 2009-03-08 The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix gyro that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
  analytic geometry: Riemann Surfaces by Way of Complex Analytic Geometry Dror Varolin, 2011-08-10 This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch
  analytic geometry: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields Vladimir G. Berkovich, 1990 The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and p -adic analysis.
  analytic geometry: Lecture Notes on O-Minimal Structures and Real Analytic Geometry Chris Miller, Jean-Philippe Rolin, Patrick Speissegger, 2012-09-14 ​This volume was produced in conjunction with the Thematic Program in o-Minimal Structures and Real Analytic Geometry, held from January to June of 2009 at the Fields Institute. Five of the six contributions consist of notes from graduate courses associated with the program: Felipe Cano on a new proof of resolution of singularities for planar analytic vector fields; Chris Miller on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of o-minimal structures from quasianalytic classes; Fernando Sanz on non-oscillatory trajectories of vector fields; and Patrick Speissegger on pfaffian sets. The sixth contribution, by Antongiulio Fornasiero and Tamara Servi, is an adaptation to the nonstandard setting of A.J. Wilkie's construction of o-minimal structures from infinitely differentiable functions. Most of this material is either unavailable elsewhere or spread across many different sources such as research papers, conference proceedings and PhD theses. This book will be a useful tool for graduate students or researchers from related fields who want to learn about expansions of o-minimal structures by solutions, or images thereof, of definable systems of differential equations. ​
  analytic geometry: Analytic Geometry and Calculus Ansel Adams, Lovincy J. Adams, Paul A. White, 1968-12-31
  analytic geometry: Analytic Geometry Gordon Fuller, 2022-10-27 This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
  analytic geometry: Analytical Geometry Barry Spain, 2014-05-09 Analytical Geometry contains various topics in analytical geometry, which are required for the advanced and scholarship levels in mathematics of the various Examining Boards. This book is organized into nine chapters and begins with an examination of the coordinates, distance, ratio, area of a triangle, and the concept of a locus. These topics are followed by discussions of the straight line, straight lines, circle, systems of circles, ellipse, hyperbola, rectangular hyperbola and parabola. This work provides exercises for each section and each chapter ends with a miscellaneous set of examples. Answers are supplied at the end of the book. This book will prove useful to advanced analytical geometry students.
  analytic geometry: Problems in Analytic Geometry D. Kletenik, 2019-02-11
  analytic geometry: Analytic Geometry Preston Albert Lambert, 1897
Redirecting...
Redirecting...

Redirecting...
Redirecting...