Advertisement
algebraic statistics: Algebraic Statistics Seth Sullivant, 2018-11-19 Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study. |
algebraic statistics: Lectures on Algebraic Statistics Mathias Drton, Bernd Sturmfels, Seth Sullivant, 2009-04-25 How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of algebraic statistics. In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models. |
algebraic statistics: An Introduction to Algebraic Statistics with Tensors Cristiano Bocci, Luca Chiantini, 2019-09-11 This book provides an introduction to various aspects of Algebraic Statistics with the principal aim of supporting Master’s and PhD students who wish to explore the algebraic point of view regarding recent developments in Statistics. The focus is on the background needed to explore the connections among discrete random variables. The main objects that encode these relations are multilinear matrices, i.e., tensors. The book aims to settle the basis of the correspondence between properties of tensors and their translation in Algebraic Geometry. It is divided into three parts, on Algebraic Statistics, Multilinear Algebra, and Algebraic Geometry. The primary purpose is to describe a bridge between the three theories, so that results and problems in one theory find a natural translation to the others. This task requires, from the statistical point of view, a rather unusual, but algebraically natural, presentation of random variables and their main classical features. The third part of the book can be considered as a short, almost self-contained, introduction to the basic concepts of algebraic varieties, which are part of the fundamental background for all who work in Algebraic Statistics. |
algebraic statistics: Algebraic Statistics Seth Sullivant, 2023-11-17 Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study. |
algebraic statistics: Algebraic Geometry and Statistical Learning Theory Sumio Watanabe, 2009-08-13 Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties. |
algebraic statistics: Algebraic Statistics Giovanni Pistone, Eva Riccomagno, Henry P. Wynn, 2000-12-21 Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model. As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science. |
algebraic statistics: Algebraic Methods in Statistical Mechanics and Quantum Field Theory Dr. Gérard G. Emch, 2014-08-04 This systematic algebraic approach offers a careful formulation of the problems' physical motivations as well as self-contained descriptions of the mathematical methods for arriving at solutions. 1972 edition. |
algebraic statistics: Lectures on Algebraic Statistics Mathias Drton, Bernd Sturmfels, Seth Sullivant, 2008-12-10 How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of algebraic statistics. In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models. |
algebraic statistics: Semialgebraic Statistics and Latent Tree Models Piotr Zwiernik, 2015-08-21 The first part of the book gives a general introduction to key concepts in algebraic statistics, focusing on methods that are helpful in the study of models with hidden variables. The author uses tensor geometry as a natural language to deal with multivariate probability distributions, develops new combinatorial tools to study models with hidden data, and describes the semialgebraic structure of statistical models. The second part illustrates important examples of tree models with hidden variables. The book discusses the underlying models and related combinatorial concepts of phylogenetic trees as well as the local and global geometry of latent tree models. It also extends previous results to Gaussian latent tree models. This book shows you how both combinatorics and algebraic geometry enable a better understanding of latent tree models. It contains many results on the geometry of the models, including a detailed analysis of identifiability and the defining polynomial constraints |
algebraic statistics: Algebraic Statistics Giovanni Pistone, Eva Riccomagno, Henry P. Wynn, 2000-12-21 Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model. As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science. |
algebraic statistics: Algebraic Codes on Lines, Planes, and Curves Richard E. Blahut, 2008-04-03 The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics. |
algebraic statistics: Markov Bases in Algebraic Statistics Satoshi Aoki, Hisayuki Hara, Akimichi Takemura, 2012-07-25 Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels. This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field. |
algebraic statistics: Emerging Applications of Algebraic Geometry Mihai Putinar, Seth Sullivant, 2008-12-10 Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on Optimization and Control and Applications in Biology, Dynamics, and Statistics held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research. |
algebraic statistics: The Geometry of Multivariate Statistics Thomas D. Wickens, 2014-02-25 A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit. |
algebraic statistics: Applications of Polynomial Systems David A. Cox, 2020-03-02 Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers. |
algebraic statistics: Computation with Linear Algebraic Groups Willem Adriaan de Graaf, 2017-08-07 Designed as a self-contained account of a number of key algorithmic problems and their solutions for linear algebraic groups, this book combines in one single text both an introduction to the basic theory of linear algebraic groups and a substantial collection of useful algorithms. Computation with Linear Algebraic Groups offers an invaluable guide to graduate students and researchers working in algebraic groups, computational algebraic geometry, and computational group theory, as well as those looking for a concise introduction to the theory of linear algebraic groups. |
algebraic statistics: Algebraic Statistics for Computational Biology L. Pachter, B. Sturmfels, 2005-08-22 This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology. |
algebraic statistics: Linear Models in Statistics Alvin C. Rencher, G. Bruce Schaalje, 2008-01-07 The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance. |
algebraic statistics: Algebraic Function Fields and Codes Henning Stichtenoth, 2009-02-11 This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission. |
algebraic statistics: Algebraic and Geometric Methods in Statistics Paolo Gibilisco, 2010 An up-to-date account of algebraic statistics and information geometry, which also explores the emerging connections between these two disciplines. |
algebraic statistics: Rational Algebraic Curves J. Rafael Sendra, Franz Winkler, Sonia Pérez-Diaz, 2007-12-10 The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves. |
algebraic statistics: Statistics in the Public Interest Alicia L. Carriquiry, Judith M. Tanur, William F. Eddy, 2022-04-22 This edited volume surveys a variety of topics in statistics and the social sciences in memory of the late Stephen Fienberg. The book collects submissions from a wide range of contemporary authors to explore the fields in which Fienberg made significant contributions, including contingency tables and log-linear models, privacy and confidentiality, forensics and the law, the decennial census and other surveys, the National Academies, Bayesian theory and methods, causal inference and causes of effects, mixed membership models, and computing and machine learning. Each section begins with an overview of Fienberg’s contributions and continues with chapters by Fienberg’s students, colleagues, and collaborators exploring recent advances and the current state of research on the topic. In addition, this volume includes a biographical introduction as well as a memorial concluding chapter comprised of entries from Stephen and Joyce Fienberg’s close friends, former students, colleagues, and other loved ones, as well as a photographic tribute. |
algebraic statistics: Selected Papers on Probability and Statistics , 2009 This volume contains translations of papers that originally appeared in the Japanese journal Sugaku. The papers range over a variety of topics in probability theory, statistics, and applications. This volume is suitable for graduate students and research mathematicians interested in probability and statistics. |
algebraic statistics: Statistical Analysis of Observations of Increasing Dimension V.L. Girko, 1995-03-31 Statistical Analysis of Observations of Increasing Dimension is devoted to the investigation of the limit distribution of the empirical generalized variance, covariance matrices, their eigenvalues and solutions of the system of linear algebraic equations with random coefficients, which are an important function of observations in multidimensional statistical analysis. A general statistical analysis is developed in which observed random vectors may not have density and their components have an arbitrary dependence structure. The methods of this theory have very important advantages in comparison with existing methods of statistical processing. The results have applications in nuclear and statistical physics, multivariate statistical analysis in the theory of the stability of solutions of stochastic differential equations, in control theory of linear stochastic systems, in linear stochastic programming, in the theory of experiment planning. |
algebraic statistics: Handbook of Statistical Systems Biology Michael Stumpf, David J. Balding, Mark Girolami, 2011-09-09 Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field. |
algebraic statistics: Topics in Algebraic Graph Theory Lowell W. Beineke, Robin J. Wilson, Peter J. Cameron, 2004-10-04 The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph symmetry). These areas have links with other areas of mathematics, such as logic and harmonic analysis, and are increasingly being used in such areas as computer networks where symmetry is an important feature. Other books cover portions of this material, but this book is unusual in covering both of these aspects and there are no other books with such a wide scope. Peter J. Cameron, internationally recognized for his substantial contributions to the area, served as academic consultant for this volume, and the result is ten expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory, linear algebra and group theory. Each chapter concludes with an extensive list of references. |
algebraic statistics: Nonparametric Statistics Michele La Rocca, Brunero Liseo, Luigi Salmaso, 2020-11-11 Highlighting the latest advances in nonparametric and semiparametric statistics, this book gathers selected peer-reviewed contributions presented at the 4th Conference of the International Society for Nonparametric Statistics (ISNPS), held in Salerno, Italy, on June 11-15, 2018. It covers theory, methodology, applications and computational aspects, addressing topics such as nonparametric curve estimation, regression smoothing, models for time series and more generally dependent data, varying coefficient models, symmetry testing, robust estimation, and rank-based methods for factorial design. It also discusses nonparametric and permutation solutions for several different types of data, including ordinal data, spatial data, survival data and the joint modeling of both longitudinal and time-to-event data, permutation and resampling techniques, and practical applications of nonparametric statistics. The International Society for Nonparametric Statistics is a unique global organization, and its international conferences are intended to foster the exchange of ideas and the latest advances and trends among researchers from around the world and to develop and disseminate nonparametric statistics knowledge. The ISNPS 2018 conference in Salerno was organized with the support of the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and the University of Salerno. |
algebraic statistics: Algebraic Structures and Applications Sergei Silvestrov, Anatoliy Malyarenko, Milica Rančić, 2020-06-18 This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas. |
algebraic statistics: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
algebraic statistics: Multiparametric Statistics Vadim Ivanovich Serdobolskii, 2007-10-18 This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called essentially multiparametric. It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations.In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book.This monograph will be of interest to a variety of specialists working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions.A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science.- Presents original mathematical investigations and open a new branch of mathematical statistics- Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems - Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis |
algebraic statistics: Bilinear Algebra Kazimierz Szymiczek, 2017-11-22 Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields. |
algebraic statistics: Computational Statistics Geof H. Givens, Jennifer A. Hoeting, 2012-11-06 This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization Integration and Simulation Bootstrapping Density Estimation and Smoothing Within these sections,each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics such as adaptive MCMC and bootstrapping for correlated data. The book website now includes comprehensive R code for the entire book. There are extensive exercises, real examples, and helpful insights about how to use the methods in practice. |
algebraic statistics: Geometric Science of Information Frank Nielsen, Frédéric Barbaresco, 2013-08-19 This book constitutes the refereed proceedings of the First International Conference on Geometric Science of Information, GSI 2013, held in Paris, France, in August 2013. The nearly 100 papers presented were carefully reviewed and selected from numerous submissions and are organized into the following thematic sessions: Geometric Statistics on Manifolds and Lie Groups, Deformations in Shape Spaces, Differential Geometry in Signal Processing, Relational Metric, Discrete Metric Spaces, Computational Information Geometry, Hessian Information Geometry I and II, Computational Aspects of Information Geometry in Statistics, Optimization on Matrix Manifolds, Optimal Transport Theory, Probability on Manifolds, Divergence Geometry and Ancillarity, Entropic Geometry, Tensor-Valued Mathematical Morphology, Machine/Manifold/Topology Learning, Geometry of Audio Processing, Geometry of Inverse Problems, Algebraic/Infinite dimensional/Banach Information Manifolds, Information Geometry Manifolds, and Algorithms on Manifolds. |
algebraic statistics: Looking Back Neil J. Dorans, Sandip Sinharay, 2011-07-15 In 2006, Paul W. Holland retired from Educational Testing Service (ETS) after a career spanning five decades. In 2008, ETS sponsored a conference, Looking Back, honoring his contributions to applied and theoretical psychometrics and statistics. Looking Back attracted a large audience that came to pay homage to Paul Holland and to hear presentations by colleagues who worked with him in special ways over those 40+ years. This book contains papers based on these presentations, as well as vignettes provided by Paul Holland before each section. The papers in this book attest to how Paul Holland's pioneering ideas influenced and continue to influence several fields such as social networks, causal inference, item response theory, equating, and DIF. He applied statistical thinking to a broad range of ETS activities in test development, statistical analysis, test security, and operations. The original papers contained in this book provide historical context for Paul Holland’s work alongside commentary on some of his major contributions by noteworthy statisticians working today. |
algebraic statistics: Partial Differential Equations Lawrence C. Evans, 2022-03-22 This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. … Evans' book is evidence of his mastering of the field and the clarity of presentation. —Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations … Every graduate student in analysis should read it. —David Jerison, MIT I usePartial Differential Equationsto prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's … I am very happy with the preparation it provides my students. —Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge … An outstanding reference for many aspects of the field. —Rafe Mazzeo, Stanford University |
algebraic statistics: Algebraic Theories E.G. Manes, 2012-12-06 In the past decade, category theory has widened its scope and now inter acts with many areas of mathematics. This book develops some of the interactions between universal algebra and category theory as well as some of the resulting applications. We begin with an exposition of equationally defineable classes from the point of view of algebraic theories, but without the use of category theory. This serves to motivate the general treatment of algebraic theories in a category, which is the central concern of the book. (No category theory is presumed; rather, an independent treatment is provided by the second chap ter.) Applications abound throughout the text and exercises and in the final chapter in which we pursue problems originating in topological dynamics and in automata theory. This book is a natural outgrowth of the ideas of a small group of mathe maticians, many of whom were in residence at the Forschungsinstitut für Mathematik of the Eidgenössische Technische Hochschule in Zürich, Switzerland during the academic year 1966-67. It was in this stimulating atmosphere that the author wrote his doctoral dissertation. The Zürich School, then, was Michael Barr, Jon Beck, John Gray, Bill Lawvere, Fred Linton, and Myles Tierney (who were there) and (at least) Harry Appelgate, Sammy Eilenberg, John Isbell, and Saunders Mac Lane (whose spiritual presence was tangible.) I am grateful to the National Science Foundation who provided support, under grants GJ 35759 and OCR 72-03733 A01, while I wrote this book. |
algebraic statistics: Information Geometry Nihat Ay, Jürgen Jost, Hông Vân Lê, Lorenz Schwachhöfer, 2017-08-25 The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems. |
algebraic statistics: Gröbner Bases Takayuki Hibi, 2014-01-07 The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points. Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems. |
Algebraic statistics - Wikipedia
Algebraic statistics is the use of algebra to advance statistics. Algebra has been useful for experimental design, parameter estimation, and hypothesis testing. Traditionally, algebraic …
Lectures on Algebraic Statistics - University of California, …
Algebraic statistics is concerned with the development of techniques in algebraic geometry, commutative algebra, and combinatorics, to address problems in statis- tics and its applications.
Algebraic Statistics - MSP
Algebraic statistics is a branch of mathematical statistics that focuses on the use of algebraic, geometric, and combinatorial methods in statistics. While the use of these methods has a long …
ALGEBRAIC STATISTICS - University of Chicago
In this article, we review the basics of Algebraic Geometry and toric varieties, and their relation to certain kinds of statistical models. We explain how to use these algebraic tools to describe a …
Algebraic Statistics in Practice: Applications to Networks
Abstract: Algebraic statistics uses tools from algebra (especially from multilinear al-gebra, commutative algebra and computational algebra), geometry and combinatorics to provide …
Algebraic Statistics - American Mathematical Society
The first book on algebraic statistics was Pistone, Riccomagno, and Wynn’s text [PRW01] which is focused on applications of compu- tational commutative algebra to the design of experiments.
Algebraic Statistics - American Mathematical Society
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting …
Lectures on Algebraic Statistics - SpringerLink
Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using …
Algebraic Statistics
Welcome to the community page of algebraic statistics. Here are some ongoing and upcoming activities in algebraic statistics: Workshop New Directions in Algebraic Statistics @ IMSI, July …
What is Algebraic Statistics?
equalities and inequalities. Algebraic statistics is not only concerned with understanding the geometry and algebra of the underlying statistical model, but also with applying this knowledge …
Algebraic statistics - Wikipedia
Algebraic statistics is the use of algebra to advance statistics. Algebra has been useful for experimental design, parameter estimation, and hypothesis testing. Traditionally, algebraic …
Lectures on Algebraic Statistics - University of California, …
Algebraic statistics is concerned with the development of techniques in algebraic geometry, commutative algebra, and combinatorics, to address problems in statis- tics and its applications.
Algebraic Statistics - MSP
Algebraic statistics is a branch of mathematical statistics that focuses on the use of algebraic, geometric, and combinatorial methods in statistics. While the use of these methods has a long …
ALGEBRAIC STATISTICS - University of Chicago
In this article, we review the basics of Algebraic Geometry and toric varieties, and their relation to certain kinds of statistical models. We explain how to use these algebraic tools to describe a …
Algebraic Statistics in Practice: Applications to Networks
Abstract: Algebraic statistics uses tools from algebra (especially from multilinear al-gebra, commutative algebra and computational algebra), geometry and combinatorics to provide …
Algebraic Statistics - American Mathematical Society
The first book on algebraic statistics was Pistone, Riccomagno, and Wynn’s text [PRW01] which is focused on applications of compu- tational commutative algebra to the design of experiments.
Algebraic Statistics - American Mathematical Society
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting …
Lectures on Algebraic Statistics - SpringerLink
Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using …
Algebraic Statistics
Welcome to the community page of algebraic statistics. Here are some ongoing and upcoming activities in algebraic statistics: Workshop New Directions in Algebraic Statistics @ IMSI, July …
What is Algebraic Statistics?
equalities and inequalities. Algebraic statistics is not only concerned with understanding the geometry and algebra of the underlying statistical model, but also with applying this knowledge …