Advertisement
algebraic system in discrete mathematics: Fundamental Structures of Algebra and Discrete Mathematics Stephan Foldes, 2011-02-14 Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples. |
algebraic system in discrete mathematics: Applied Discrete Structures - Part 2- Algebraic Structures Ken Levasseur, Al Doerr, 2017-05-15 Applied Discrete Structures, Part II - Algebraic Structures, is an introduction to groups, monoids, vector spaces, lattices, boolean algebras, rings and fields. It corresponds with the content of Discrete Structures II at UMass Lowell, which is a required course for students in Computer Science. It presumes background contained in Part I - Fundamentals. Applied Discrete Structures has been approved by the American Institute of Mathematics as part of their Open Textbook Initiative. For more information on open textbooks, visit http: //www.aimath.org/textbooks/. This version was created using Mathbook XML (https: //mathbook.pugetsound.edu/) Al Doerr is Emeritus Professor of Mathematical Sciences at UMass Lowell. His interests include abstract algebra and discrete mathematics. Ken Levasseur is a Professor of Mathematical Sciences at UMass Lowell. His interests include discrete mathematics and abstract algebra, and their implementation using computer algebra systems. |
algebraic system in discrete mathematics: Applied Discrete Structures Ken Levasseur, Al Doerr, 2012-02-25 ''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the favorite examples that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''-- |
algebraic system in discrete mathematics: Discrete Mathematics for Computer Science John Schlipf, Sue Whitesides, Gary Haggard, 2020-09-22 Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented. |
algebraic system in discrete mathematics: Algebraic Number Theory Richard A. Mollin, 2011-01-05 Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications. |
algebraic system in discrete mathematics: Fundamental Structures of Algebra and Discrete Mathematics Stephan Foldes, 1994-03-31 Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples. |
algebraic system in discrete mathematics: Discrete Mathematics Iyengar, N.Ch. S.N./Chandrasekaran V.M./Venkalesh K.A. & Arunachalam P.S., 2003-11-01 Student-friendly and comprehensive, this book covers topics such as Mathematical Logic, Set Theory, Algebraic Systems, Boolean Algebra and Graph Theory that are essential to the study of Computer Science in great detail. |
algebraic system in discrete mathematics: Discrete Mathematics Martin Aigner, 2023-01-24 The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints and solutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition… This book is a well-written introduction to discrete mathematics and is highly recommended to every student of mathematics and computer science as well as to teachers of these topics. —Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of the MAA for expository writing, and his book Proofs from the BOOK with Günter M. Ziegler has been an international success with translations into 12 languages. |
algebraic system in discrete mathematics: Introductory Discrete Mathematics V. K. Balakrishnan, 1996-01-01 This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition. |
algebraic system in discrete mathematics: Topics in Algebraic Graph Theory Lowell W. Beineke, Robin J. Wilson, Peter J. Cameron, 2004-10-04 The rapidly expanding area of algebraic graph theory uses two different branches of algebra to explore various aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph symmetry). These areas have links with other areas of mathematics, such as logic and harmonic analysis, and are increasingly being used in such areas as computer networks where symmetry is an important feature. Other books cover portions of this material, but this book is unusual in covering both of these aspects and there are no other books with such a wide scope. Peter J. Cameron, internationally recognized for his substantial contributions to the area, served as academic consultant for this volume, and the result is ten expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory, linear algebra and group theory. Each chapter concludes with an extensive list of references. |
algebraic system in discrete mathematics: Discrete Mathematics with Applications Thomas Koshy, 2004-01-19 This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects* Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises* Features interesting anecdotes and biographies of 60 mathematicians and computer scientists* Instructor's Manual available for adopters* Student Solutions Manual available separately for purchase (ISBN: 0124211828) |
algebraic system in discrete mathematics: Discrete Mathematics Sriraman Sridharan, R. Balakrishnan, 2019-07-30 Conveying ideas in a user-friendly style, this book has been designed for a course in Applied Algebra. The book covers graph algorithms, basic algebraic structures, coding theory and cryptography. It will be most suited for senior undergraduates and beginning graduate students in mathematics and computer science as also to individuals who want to have a knowledge of the below-mentioned topics. Provides a complete discussion on several graph algorithms such as Prims algorithm and Kruskals algorithm for sending a minimum cost spanning tree in a weighted graph, Dijkstras single source shortest path algorithm, Floyds algorithm, Warshalls algorithm, Kuhn-Munkres Algorithm. In addition to DFS and BFS search, several applications of DFS and BFS are also discussed. Presents a good introduction to the basic algebraic structures, namely, matrices, groups, rings, fields including finite fields as also a discussion on vector spaces and linear equations and their solutions. Provides an introduction to linear codes including cyclic codes. Presents a description of private key cryptosystems as also a discussion on public key cryptosystems such as RSA, ElGamal and Miller-Rabin. Finally, the Agrawal-KayalSaxena algorithm (AKS Algorithm) for testing if a given positive integer is prime or not in polynomial time is presented- the first time in a textbook. Two distinguished features of the book are: Illustrative examples have been presented throughout the book to make the readers appreciate the concepts described. Answers to all even-numbered exercises in all the chapters are given. |
algebraic system in discrete mathematics: Discrete Mathematics Norman Biggs, 2002-12-19 Discrete mathematics is a compulsory subject for undergraduate computer scientists. This new edition includes new chapters on statements and proof, logical framework, natural numbers and the integers and updated exercises from the previous edition. |
algebraic system in discrete mathematics: Discrete Mathematics for New Technology, Second Edition Rowan Garnier, John Taylor, 2001-12-01 Updated and expanded, Discrete Mathematics for New Technology, Second Edition provides a sympathetic and accessible introduction to discrete mathematics, including the core mathematics requirements for undergraduate computer science students. The approach is comprehensive yet maintains an easy-to-follow progression from the basic mathematical ideas to the more sophisticated concepts examined in the latter stages of the book. Although the theory is presented rigorously, it is illustrated by the frequent use of pertinent examples and is further reinforced with exercises-some with hints and solutions-to enable the reader to achieve a comprehensive understanding of the subject at hand. New to the Second Edition Numerous new examples and exercises designed to illustrate and reinforce mathematical concepts and facilitate students' progression through the topics New sections on typed set theory and an introduction to formal specification Presenting material that is at the foundations of mathematics itself, Discrete Mathematics for New Technology is a readable, friendly textbook designed for non-mathematicians as well as for computing and mathematics undergraduates alike. |
algebraic system in discrete mathematics: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-06-05 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. The color images and text in this book have been converted to grayscale. |
algebraic system in discrete mathematics: Discrete Mathematics with Proof Eric Gossett, 2009-06-22 A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics. |
algebraic system in discrete mathematics: Discrete Mathematics and Algebraic Structures Larry J. Gerstein, 1987-01-01 Provides a brief but substantial introduction to ideas, structures and techniques in discrete mathematics and abstract algebra. It addresses many of the common mathematical needs of students in mathematics and computer science at undergraduate level. |
algebraic system in discrete mathematics: Algebraic and Combinatorial Methods in Operations Research R.E. Burkard, R.A. Cuninghame-Green, U. Zimmermann, 1984-01-01 For the first time, this book unites different algebraic approaches for discrete optimization and operations research. The presentation of some fundamental directions of this new fast developing area shows the wide range of its applicability.Specifically, the book contains contributions in the following fields: semigroup and semiring theory applied to combinatorial and integer programming, network flow theory in ordered algebraic structures, extremal optimization problems, decomposition principles for discrete structures, Boolean methods in graph theory and applications. |
algebraic system in discrete mathematics: Introduction to Algebra Peter J. Cameron, 2008 This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. |
algebraic system in discrete mathematics: Neutrices and External Numbers Bruno Dinis, Imme van den Berg, 2019-07-03 Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox |
algebraic system in discrete mathematics: Discrete Mathematics Jean Gallier, 2011-01-25 This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs. |
algebraic system in discrete mathematics: Network Algebra Gheorghe Stefanescu, 2012-12-06 Network Algebra considers the algebraic study of networks and their behaviour. It contains general results on the algebraic theory of networks, recent results on the algebraic theory of models for parallel programs, as well as results on the algebraic theory of classical control structures. The results are presented in a unified framework of the calculus of flownomials, leading to a sound understanding of the algebraic fundamentals of the network theory. The term 'network' is used in a broad sense within this book, as consisting of a collection of interconnecting cells, and two radically different specific interpretations of this notion of networks are studied. One interpretation is additive, when only one cell is active at a given time - this covers the classical models of control specified by finite automata or flowchart schemes. The second interpretation is multiplicative, where each cell is always active, covering models for parallel computation such as Petri netsor dataflow networks. More advanced settings, mixing the two interpretations are included as well. Network Algebra will be of interest to anyone interested in network theory or its applications and provides them with the results needed to put their work on a firm basis. Graduate students will also find the material within this book useful for their studies. |
algebraic system in discrete mathematics: Discrete Mathematics Sriraman Sridharan, R. Balakrishnan, 2019-07-30 Conveying ideas in a user-friendly style, this book has been designed for a course in Applied Algebra. The book covers graph algorithms, basic algebraic structures, coding theory and cryptography. It will be most suited for senior undergraduates and beginning graduate students in mathematics and computer science as also to individuals who want to have a knowledge of the below-mentioned topics. Provides a complete discussion on several graph algorithms such as Prims algorithm and Kruskals algorithm for sending a minimum cost spanning tree in a weighted graph, Dijkstras single source shortest path algorithm, Floyds algorithm, Warshalls algorithm, Kuhn-Munkres Algorithm. In addition to DFS and BFS search, several applications of DFS and BFS are also discussed. Presents a good introduction to the basic algebraic structures, namely, matrices, groups, rings, fields including finite fields as also a discussion on vector spaces and linear equations and their solutions. Provides an introduction to linear codes including cyclic codes. Presents a description of private key cryptosystems as also a discussion on public key cryptosystems such as RSA, ElGamal and Miller-Rabin. Finally, the Agrawal-KayalSaxena algorithm (AKS Algorithm) for testing if a given positive integer is prime or not in polynomial time is presented- the first time in a textbook. Two distinguished features of the book are: Illustrative examples have been presented throughout the book to make the readers appreciate the concepts described. Answers to all even-numbered exercises in all the chapters are given. |
algebraic system in discrete mathematics: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory Peter Benner, Matthias Bollhöfer, Daniel Kressner, Christian Mehl, Tatjana Stykel, 2015-05-09 This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in Numerical Algebra, hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. |
algebraic system in discrete mathematics: Algebra, Geometry and Software Systems Michael Joswig, Nobuki Takayama, 2013-03-14 In many fields of modern mathematics specialised scientific software becomes increasingly important. Hence, tremendous effort is taken by numerous groups all over the world to develop appropriate solutions. This book contains surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. Therefore the volume's other focus is on solutions towards the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general framework for modular systems. |
algebraic system in discrete mathematics: Abstract Algebra Thomas Judson, 2023-08-11 Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory. |
algebraic system in discrete mathematics: Boolean Algebra and Its Applications J. Eldon Whitesitt, 2012-05-24 Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition. |
algebraic system in discrete mathematics: Discrete Mathematics and Symmetry Angel Garrido, 2020-03-05 Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group. |
algebraic system in discrete mathematics: Algebraic and Geometric Ideas in the Theory of Discrete Optimization Jesus A. De Loera, Raymond Hemmecke, Matthias K?ppe, 2012-01-01 This book presents recent advances in the mathematical theory of discrete optimization, particularly those supported by methods from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside the standard curriculum in optimization. |
algebraic system in discrete mathematics: Information Algebras Juerg Kohlas, 2012-12-06 Information usually comes in pieces, from different sources. It refers to different, but related questions. Therefore information needs to be aggregated and focused onto the relevant questions. Considering combination and focusing of information as the relevant operations leads to a generic algebraic structure for information. This book introduces and studies information from this algebraic point of view. Algebras of information provide the necessary abstract framework for generic inference procedures. They allow the application of these procedures to a large variety of different formalisms for representing information. At the same time they permit a generic study of conditional independence, a property considered as fundamental for knowledge presentation. Information algebras provide a natural framework to define and study uncertain information. Uncertain information is represented by random variables that naturally form information algebras. This theory also relates to probabilistic assumption-based reasoning in information systems and is the basis for the belief functions in the Dempster-Shafer theory of evidence. |
algebraic system in discrete mathematics: Discrete Mathematics Babu Ram, 2012 Discrete Mathematics will be of use to any undergraduate as well as post graduate courses in Computer Science and Mathematics. The syllabi of all these courses have been studied in depth and utmost care has been taken to ensure that all the essential topics in discrete structures are adequately emphasized. The book will enable the students to develop the requisite computational skills needed in software engineering. |
algebraic system in discrete mathematics: Discrete Computational Structures Robert R. Korfhage, 1984 |
algebraic system in discrete mathematics: Isomorphisms, Symmetry and Computations in Algebraic Graph Theory Gareth A. Jones, Ilia Ponomarenko, Jozef Širáň, 2020-01-10 This book consists of a selection of peer-reviewed contributions to the Workshop on Algebraic Graph Theory that took place in Pilsen, Czech Republic in October 2016. Primarily intended for early career researchers, it presents eight self-contained articles on a selection of topics within algebraic combinatorics, ranging from association schemes to symmetries of graphs and isomorphism testing. Algebraic combinatorics is a compelling mathematical discipline based on the powerful interplay of algebraic and combinatorial methods. Algebraic interpretation of combinatorial structures (such as symmetry or regularity) has often led to enlightening discoveries and powerful results, while discrete and combinatorial structures have given rise to new algebraic structures that have found valuable applications. In addition to these original research contributions, the reader will find a survey linking numerous threads in algebraic combinatorics, and an extensive tutorial showcasing the universality of algebraic methods in the study of combinatorial structures. |
algebraic system in discrete mathematics: Foundations of Discrete Mathematics with Algorithms and Programming Sriraman Sridharan, Rangaswami Balakrishnan, 2019 Discrete Mathematics has permeated the whole of mathematics so much so it has now come to be taught even at the high school level. This book presents the basics of Discrete Mathematics and its applications to day-to-day problems in several areas. This book is intended for undergraduate students of Computer Science, Mathematics and Engineering. A number of examples have been given to enhance the understanding of concepts. The programming languages used are Pascal and C. |
algebraic system in discrete mathematics: Discrete Mathematical Structures D. S. Malik, M. K. Sen, 2004 Teaches students the mathematical foundations of computer science, including logic, Boolean algebra, basic graph theory, finite state machines, grammars and algorithms, and helps them understand mathematical reasoning for reading, comprehension and construction of mathematical arguments. |
algebraic system in discrete mathematics: Algebraic Combinatorics Chris Godsil, 2017-10-19 This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics. |
algebraic system in discrete mathematics: Number Theory and Discrete Mathematics A.K. Agarwal, Bruce C. Berndt, Christian F. Krattenthaler, Gary L. Mullen, K. Ramachandra, Michel Waldschmidt, 2012-12-06 To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan. He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a magical genius. During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: • M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. • C. |
algebraic system in discrete mathematics: Advance Discrete Structure C. B. Gupta, Sandeep Kumar, S. R. Singh, 2011-09 Advance discrete structure is a compulsory paper in most of computing programs (M.Tech, MCA, M.Sc, B.Tech, BCA, B. Sc etc.). This book has been written to fulfill the requirements of graduate and post-graduate students pursuing courses in mathematics as w |
Algebra - Wikipedia
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of …
Algebraic Expression - Definition, Examples, Parts, & Formulas
May 30, 2024 · Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical …
ALGEBRAIC | English meaning - Cambridge Dictionary
Quantitative, algebraic reasoning lies behind modern economics. I’m looking for a font on my computer with standard algebraic symbols. The same algebraic equations that predict the size …
ALGEBRAIC Definition & Meaning - Merriam-Webster
The meaning of ALGEBRAIC is relating to, involving, or according to the laws of algebra. How to use algebraic in a sentence.
Khan Academy
Learn algebra—variables, equations, functions, graphs, and more.
Algebraic - definition of algebraic by The Free Dictionary
Define algebraic. algebraic synonyms, algebraic pronunciation, algebraic translation, English dictionary definition of algebraic. adj. 1. Of, relating to, or designating algebra. 2. Designating …
1.4: Algebraic Expressions and Formulas - Mathematics LibreTexts
Oct 6, 2021 · Identify the parts of an algebraic expression. Apply the distributive property. Evaluate algebraic expressions. Use formulas that model common applications.
ALGEBRAIC Definition & Meaning - Dictionary.com
Mathematics. of or relating to an element that is the root of a polynomial equation with coefficients from some given field. is algebraic over the field of real numbers. using arbitrary letters or …
Algebraic Expressions in Math: Definition, Example and Equation
Apr 11, 2025 · Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used …
What is Algebra? Definition, Basics, Examples, Facts - SplashLearn
Algebra is the part of mathematics that helps represent problems or situations in the form of mathematical expressions. In algebra, we use numbers like 2, −7, 0.068 etc., which have a …
Algebra - Wikipedia
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of …
Algebraic Expression - Definition, Examples, Parts, & Formulas
May 30, 2024 · Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical …
ALGEBRAIC | English meaning - Cambridge Dictionary
Quantitative, algebraic reasoning lies behind modern economics. I’m looking for a font on my computer with standard algebraic symbols. The same algebraic equations that predict the size …
ALGEBRAIC Definition & Meaning - Merriam-Webster
The meaning of ALGEBRAIC is relating to, involving, or according to the laws of algebra. How to use algebraic in a sentence.
Khan Academy
Learn algebra—variables, equations, functions, graphs, and more.
Algebraic - definition of algebraic by The Free Dictionary
Define algebraic. algebraic synonyms, algebraic pronunciation, algebraic translation, English dictionary definition of algebraic. adj. 1. Of, relating to, or designating algebra. 2. Designating …
1.4: Algebraic Expressions and Formulas - Mathematics LibreTexts
Oct 6, 2021 · Identify the parts of an algebraic expression. Apply the distributive property. Evaluate algebraic expressions. Use formulas that model common applications.
ALGEBRAIC Definition & Meaning - Dictionary.com
Mathematics. of or relating to an element that is the root of a polynomial equation with coefficients from some given field. is algebraic over the field of real numbers. using arbitrary letters or …
Algebraic Expressions in Math: Definition, Example and Equation
Apr 11, 2025 · Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used …
What is Algebra? Definition, Basics, Examples, Facts - SplashLearn
Algebra is the part of mathematics that helps represent problems or situations in the form of mathematical expressions. In algebra, we use numbers like 2, −7, 0.068 etc., which have a …