Advertisement
an introduction to statistical thermodynamics hill: An Introduction to Statistical Thermodynamics Terrell L. Hill, 1986-01-01 A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level. — Philosophical Magazine Although written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances. The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics and includes discussions of energy levels, states and eigenfunctions, degeneracy and other topics. Part II examines systems composed of independent molecules or of other independent subsystems. Topics range from ideal monatomic gas and monatomic crystals to polyatomic gas and configuration of polymer molecules and rubber elasticity. An examination of systems of interacting molecules comprises the nine chapters in Part Ill, reviewing such subjects as lattice statistics, imperfect gases and dilute liquid solutions. Part IV covers quantum statistics and includes sections on Fermi-Dirac and Bose-Einstein statistics, photon gas and free-volume theories of quantum liquids. Each chapter includes problems varying in difficulty — ranging from simple numerical exercises to small-scale research propositions. In addition, supplementary reading lists for each chapter invite students to pursue the subject at a more advanced level. Readers are assumed to have studied thermodynamics, calculus, elementary differential equations and elementary quantum mechanics. Because of the flexibility of the chapter arrangements, this book especially lends itself to use in a one-or two-semester graduate course in chemistry, a one-semester senior or graduate course in physics or an introductory course in statistical mechanics. |
an introduction to statistical thermodynamics hill: Statistical Mechanics Terrell L. Hill, 2013-04-26 Standard text covers classical statistical mechanics, quantum statistical mechanics, relation of statistical mechanics to thermodynamics, plus fluctuations, theory of imperfect gases and condensation, distribution functions and the liquid state, more. |
an introduction to statistical thermodynamics hill: An Introduction to Statistical Mechanics and Thermodynamics Robert H. Swendsen, 2012-03 This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding. |
an introduction to statistical thermodynamics hill: The Principles of Statistical Mechanics Richard C. Tolman, 1979 |
an introduction to statistical thermodynamics hill: Thermodynamics and an Introduction to Thermostatistics Herbert B. Callen, 1991-01-16 The only text to cover both thermodynamic and statistical mechanics--allowing students to fully master thermodynamics at the macroscopic level. Presents essential ideas on critical phenomena developed over the last decade in simple, qualitative terms. This new edition maintains the simple structure of the first and puts new emphasis on pedagogical considerations. Thermostatistics is incorporated into the text without eclipsing macroscopic thermodynamics, and is integrated into the conceptual framework of physical theory. |
an introduction to statistical thermodynamics hill: An Introduction to Thermodynamics and Statistical Mechanics Keith Stowe, 2013-10-10 This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten to explore a greater number of topics, more clearly and concisely. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd-numbered problems, and solutions to even-numbered problems are available to instructors at www.cambridge.org/9781107694927. |
an introduction to statistical thermodynamics hill: Statistical Mechanics B. Widom, 2002-04-18 This book is an introduction to statistical mechanics, intended for advanced undergraduate or beginning graduate students. |
an introduction to statistical thermodynamics hill: Statistical Mechanics R. K. Pathria, 2016-06-30 International Series in Natural Philosophy, Volume 45: Statistical Mechanics discusses topics relevant to explaining the physical properties of matter in bulk. The book is comprised of 13 chapters that primarily focus on the equilibrium states of physical systems. Chapter 1 discusses the statistical basis of thermodynamics, and Chapter 2 covers the elements of ensemble theory. Chapters 3 and 4 tackle the canonical and grand canonical ensemble. Chapter 5 deals with the formulation of quantum statistics, while Chapter 6 reviews the theory of simple gases. Chapters 7 and 8 discuss the ideal Bose and Fermi systems. The book also covers the cluster expansion, pseudopotential, and quantized field methods. The theory of phase transitions and fluctuations are then discussed. The text will be of great use to researchers who wants to utilize statistical mechanics in their work. |
an introduction to statistical thermodynamics hill: Thermodynamics and Statistical Mechanics M. Scott Shell, 2015-04-16 Learn classical thermodynamics alongside statistical mechanics and how macroscopic and microscopic ideas interweave with this fresh approach to the subjects. |
an introduction to statistical thermodynamics hill: Statistical Physics Gregory H. Wannier, 2012-08-09 Classic text combines thermodynamics, statistical mechanics, and kinetic theory in one unified presentation. Topics include equilibrium statistics of special systems, kinetic theory, transport coefficients, and fluctuations. Problems with solutions. 1966 edition. |
an introduction to statistical thermodynamics hill: Statistical Mechanics Norman Davidson, 2013-01-23 Sufficiently rigorous for introductory or intermediate graduate courses, this text offers a comprehensive treatment of the techniques and limitations of statistical mechanics. 82 figures. 15 tables. 1962 edition. |
an introduction to statistical thermodynamics hill: Introduction to Modern Statistical Mechanics David Chandler, 1987 Lectures on elementary statistical mechanics, taught at the University of Illinois and at the University of Pennsylvania. |
an introduction to statistical thermodynamics hill: Molecular Driving Forces Ken Dill, Sarina Bromberg, 2010-10-21 Molecular Driving Forces, Second Edition E-book is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) Microscopic Dynamics introduces single molecule experiments; and (2) Molecular Machines considers how nanoscale machines and engines work. The Logic of Thermodynamics has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts. |
an introduction to statistical thermodynamics hill: Statistical Mechanics Donald A. McQuarrie, 2000-06-16 The canonical ensemble - Other ensembles and fluctuations - Boltzmann statistics, fermi-dirac statistics, and bose-einstein statistics - Ideal monatomic gas - Ideal diatomic - Classical statistical mechanics - Ideal polyatomic - Chemical equilibrium - Quantum statistics - Crystals - Imperfect gases - Distribution functions in classical monatomic liquids - Perturbation theories of liquids - Solutions of strong electrolytes - Kinetic theory of gases and molecular collisions - Continuum mechanics - Kinetic theory of-gases and the boltzmann equation - Transport processes in dilute gases - Theory of brownian motion - The time-correlation function formalism. |
an introduction to statistical thermodynamics hill: An Introduction to Statistical Thermodynamics Terrell L. Hill, 1986 |
an introduction to statistical thermodynamics hill: Introduction to Statistical Physics Kerson Huang, 2001-09-20 Statistical physics is a core component of most undergraduate (and some post-graduate) physics degree courses. It is primarily concerned with the behavior of matter in bulk-from boiling water to the superconductivity of metals. Ultimately, it seeks to uncover the laws governing random processes, such as the snow on your TV screen. This essential new textbook guides the reader quickly and critically through a statistical view of the physical world, including a wide range of physical applications to illustrate the methodology. It moves from basic examples to more advanced topics, such as broken symmetry and the Bose-Einstein equation. To accompany the text, the author, a renowned expert in the field, has written a Solutions Manual/Instructor's Guide, available free of charge to lecturers who adopt this book for their courses. Introduction to Statistical Physics will appeal to students and researchers in physics, applied mathematics and statistics. |
an introduction to statistical thermodynamics hill: Computational Statistical Mechanics W.G. Hoover, 2012-12-02 Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and analysis of nonequilibrium mass, momentum, and energy flows. Such a unified approach makes possible consistent mechanical definitions of temperature, stress, and heat flux which lead to a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics. The intimate connection linking Lyapunov-unstable microscopic motions to macroscopic dissipative flows through multifractal phase-space structures is illustrated with many examples from the recent literature. The book is well-suited for undergraduate courses in advanced thermodynamics, statistical mechanic and transport theory, and graduate courses in physics and chemistry. |
an introduction to statistical thermodynamics hill: Non-Equilibrium Thermodynamics S. R. De Groot, P. Mazur, 2013-01-23 Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more. |
an introduction to statistical thermodynamics hill: Statistical Thermodynamics M. C. Gupta, 2007 This Is An Introductory Book Which Explains The Foundations Of The Subject And Its Application. It Is Intended Primarily For Graduate Students But May Provide Useful Information And Reading To Science And Engineering Students At All Levels. It Assumes That Readers Have Knowledge Of Basic Thermodynamics And Quantum Mechanics. With This, The Theory Has Been Developed In A Simple, Logical And Understandable Way. Some Applications Of Statistical Thermodynamics Have Been Described In Detail With Illustrative Solved Examples.There Are Two Basic Approaches In Statistical Mechanics; One Based On The Study Of Independent Particles In An Isolated System And The Other Based On The Concept Of Ensembles. In This Book Attempt Has Been Made To Take Advantage Of Both Approaches. While The Fundamental Concepts Have Been Developed By First Approach, Concept Of Ensembles Have Been Included To Bring Out The Importance Of This Concept In The Application Of Statistical Thermodynamics To Chemical Systems Where Interparticle Interactions Become Important.Part I Of The Book Deals With The Background Concepts, Fundamentals In Mathematics, Classical Mechanics, Quantum Mechanics And Thermodynamics Which Are Essential For Statistical Mechanics. Part Ii Covers Formalism Of Statistical Mechanism And Its Relation To Thermodynamics As Well As The Statistical Mechanics Of Ensembles, Quantum Statistics And Fluctuations. Part Iii Includes Chapters On The Applications Of The Formalism To Real Laboratory Chemical Systems. In This Part Additions Such As Imperfect Gases, Equilibrium Isotope And Kinetic Isotope Effects And Reactions At The Surfaces Have Been Made, In This Edition. Part Iv Is Also An Addition Which Covers Quantum Systems Such As Ideal Fermi Gas (Free Electrons In Metals), Photon Gas And Ideal Bose Gas (Helium Gas). |
an introduction to statistical thermodynamics hill: An introduction to statistical thermodynamics Terrell L. Hill, |
an introduction to statistical thermodynamics hill: Topics In Statistical Mechanics (Second Edition) Brian Cowan, 2021-07-23 Building on the material learned by students in their first few years of study, Topics in Statistical Mechanics (Second Edition) presents an advanced level course on statistical and thermal physics. It begins with a review of the formal structure of statistical mechanics and thermodynamics considered from a unified viewpoint. There is a brief revision of non-interacting systems, including quantum gases and a discussion of negative temperatures. Following this, emphasis is on interacting systems. First, weakly interacting systems are considered, where the interest is in seeing how small interactions cause small deviations from the non-interacting case. Second, systems are examined where interactions lead to drastic changes, namely phase transitions. A number of specific examples is given, and these are unified within the Landau theory of phase transitions. The final chapter of the book looks at non-equilibrium systems, in particular the way they evolve towards equilibrium. This is framed within the context of linear response theory. Here fluctuations play a vital role, as is formalised in the fluctuation-dissipation theorem.The second edition has been revised particularly to help students use this book for self-study. In addition, the section on non-ideal gases has been expanded, with a treatment of the hard-sphere gas, and an accessible discussion of interacting quantum gases. In many cases there are details of Mathematica calculations, including Mathematica Notebooks, and expression of some results in terms of Special Functions. |
an introduction to statistical thermodynamics hill: Statistical Physics and Thermodynamics Jochen Rau, 2017-09-22 Statistical physics and thermodynamics describe the behaviour of systems on the macroscopic scale. Their methods are applicable to a wide range of phenomena: from refrigerators to the interior of stars, from chemical reactions to magnetism. Indeed, of all physical laws, the laws of thermodynamics are perhaps the most universal. This text provides a concise yet thorough introduction to the key concepts which underlie statistical physics and thermodynamics. It begins with a review of classical probability theory and quantum theory, as well as a careful discussion of the notions of information and entropy, prior to embarking on the development of statistical physics proper. The crucial steps leading from the microscopic to the macroscopic domain are rendered transparent. In particular, the laws of thermodynamics are shown to emerge as natural consequences of the statistical framework. While the emphasis is on clarifying the basic concepts, the text also contains many applications and classroom-tested exercises, covering all major topics of a standard course on statistical physics and thermodynamics. |
an introduction to statistical thermodynamics hill: Quantum Field Theory and Condensed Matter Ramamurti Shankar, 2017-08-30 Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm-Pines and Chern-Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics. |
an introduction to statistical thermodynamics hill: Introduction to Metallurgical Thermodynamics David R. Gaskell, 1981 |
an introduction to statistical thermodynamics hill: Monte Carlo Simulation in Statistical Physics Kurt Binder, Dieter W. Heermann, 2013-11-11 When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a realiife problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the formal material was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects. |
an introduction to statistical thermodynamics hill: Methods of Thermodynamics Howard Reiss, 2012-09-05 Outstanding text focuses on physical technique of thermodynamics, typical problems, and significance and use of thermodynamic potential. Mathematical apparatus, first law of thermodynamics, second law and entropy, more. 1965 edition. |
an introduction to statistical thermodynamics hill: Introduction to Statistical Mechanics S. K. Sinha, 2005 |
an introduction to statistical thermodynamics hill: Statistical Mechanics of Nonequilibrium Liquids Denis J. Evans, Gary P. Morriss, 2007-08-01 There is a symbiotic relationship between theoretical nonequilibrium statistical mechanics on the one hand and the theory and practice of computer simulation on the other. Sometimes, the initiative for progress has been with the pragmatic requirements of computer simulation and at other times, the initiative has been with the fundamental theory of nonequilibrium processes. This book summarises progress in this field up to 1990--Publisher's description. |
an introduction to statistical thermodynamics hill: Thermodynamics and Introductory Statistical Mechanics Bruno Linder, 2004-10-06 In this clear and concise introduction to thermodynamics and statistical mechanics the reader, who will have some previous exposure to thermodynamics, will be guided through each of the two disciplines separately initially to provide an in-depth understanding of the area and thereafter the connection between the two is presented and discussed. In addition, mathematical techniques are introduced at appropriate times, highlighting such use as: exact and inexact differentials, partial derivatives, Caratheodory's theorem, Legendre transformation, and combinatory analysis. * Emphasis is placed equally on fundamentals and applications * Several problems are included |
an introduction to statistical thermodynamics hill: Thermodynamics and Statistical Mechanics Richard Fitzpatrick, 2020 |
an introduction to statistical thermodynamics hill: Rational Thermodynamics C. Truesdell, 2012-12-06 In the first edition of this book I tried to survey in brief compass the main ideas, methods, and discoveries of rational thermodynamics as it then stood, only five years after Messrs. COLEMAN & NOLL, while in Baltimore, had written the fundamental memoir that provided for the new science the one root theretofore wanting. A survey in the same style today would require an almost wholly new book, three or four times as long. As it was in 1968, again in 1983 a consecutive treatise restricted to the foundations would be premature, for at this moment they are under earnest discussion, probing analysis, and powerful attack by several students and from several directions. Because, although in the first edition I expressed some opinions I no longer hold and made some statements I should now recast or even re tract, it seems even yet to offer a simple introduction to some aspects of the field that remain current, I have chosen to reprint it unaltered except for emendation of slips and bettering of the English here and there. |
an introduction to statistical thermodynamics hill: The Theoretical Minimum Leonard Susskind, George Hrabovsky, 2014-04-22 A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics Beautifully clear explanations of famously 'difficult' things, -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace. |
an introduction to statistical thermodynamics hill: Equilibrium Statistical Physics Michael Plischke, Birger Bergersen, 1994 This textbook concentrates on modern topics in statistical physics with an emphasis on strongly interacting condensed matter systems. The book is self-contained and is suitable for beginning graduate students in physics and materials science or undergraduates who have taken an introductory course in statistical mechanics. Phase transitions and critical phenomena are discussed in detail including mean field and Landau theories and the renormalization group approach. The theories are applied to a number of interesting systems such as magnets, liquid crystals, polymers, membranes, interacting Bose and Fermi fluids; disordered systems, percolation and spin of equilibrium concepts are also discussed. Computer simulations of condensed matter systems by Monte Carlo-based and molecular dynamics methods are treated. |
an introduction to statistical thermodynamics hill: Elementary Statistical Physics Charles Kittel, 2012-04-26 Graduate-level text covers properties of the Fermi-Dirac and Bose-Einstein distributions; the interrelated subjects of fluctuations, thermal noise, and Brownian movement; and the thermodynamics of irreversible processes. 1958 edition. |
an introduction to statistical thermodynamics hill: Statistical and Thermal Physics Harvey Gould, Jan Tobochnik, 2021-09-14 A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors) |
an introduction to statistical thermodynamics hill: Thermodynamics and Statistical Mechanics of Macromolecular Systems Michael Bachmann, 2014-04-24 The structural mechanics of proteins that fold into functional shapes, polymers that aggregate and form clusters, and organic macromolecules that bind to inorganic matter can only be understood through statistical physics and thermodynamics. This book reviews the statistical mechanics concepts and tools necessary for the study of structure formation processes in macromolecular systems that are essentially influenced by finite-size and surface effects. Readers are introduced to molecular modeling approaches, advanced Monte Carlo simulation techniques, and systematic statistical analyses of numerical data. Applications to folding, aggregation, and substrate adsorption processes of polymers and proteins are discussed in great detail. Particular emphasis is placed on the reduction of complexity by coarse-grained modeling, which allows for the efficient, systematic investigation of structural phases and transitions. Providing insight into modern research at this interface between physics, chemistry, biology, and nanotechnology, this book is an excellent reference for graduate students and researchers. |
an introduction to statistical thermodynamics hill: Introduction to Statistical Physics Silvio Salinas, 2001-02-08 This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena. |
an introduction to statistical thermodynamics hill: Elements of Classical and Statistical Thermodynamics Leonard Kollender Nash, 1968 |
an introduction to statistical thermodynamics hill: Statistical Thermodynamics Andrew Maczek, Anthony Meijer, 2023 Aimed at third- and fourth-year undergraduate students of chemistry and chemical engineering, this text extends their existing knowledge of elementary classical thermodynamics to an understanding of the behaviour of large numbers of molecules. |
an introduction to statistical thermodynamics hill: Thermodynamics, Kinetic Theory, and Statistical Thermodynamics Francis Weston Sears, Gerhard L. Salinger, 1975 This text is a major revision of An Introduction to Thermodynamics, Kinetic Theory, and Statistical Mechanics by Francis Sears. The general approach has been unaltered and the level remains much the same, perhaps being increased somewhat by greater coverage. The text is particularly useful for advanced undergraduates in physics and engineering who have some familiarity with calculus. |
怎样写好英文论文的 Introduction 部分呢? - 知乎
Introduction应该是一篇论文中最难写的一部分,也是最重要的。“A good introduction will “sell” the study to editors, reviewers, readers, and sometimes even the media.” [1]。通过Introduction可 …
Difference between "introduction to" and "introduction of"
May 22, 2011 · Here, "Introduction of" refers to bringing something into a place or situation. "Can you give me an introduction to the president of the company?" "Introduction to" is more …
Differences between summary, abstract, overview, and synopsis
Feb 12, 2014 · I like Professor David Barnhill's argument for precis: "A precis is a brief summary of a larger work. The term "abstract" has the same meaning and is much more common, but I …
怎样写好英文论文的 Introduction 部分? - 知乎
Why An Introduction Is Needed? 「从文章的大结构来看Introduction提出了你的研究问题,这个问题的答案应该在文章的Discussion或者Conclusion部分呈现给读者,也就是在文章的首尾形成 …
科学引文索引(SCI)论文的引言(Introduction)怎么写? - 知乎
Introduction一共分为8段,属于标准的Introduction层层递进的写作模式:大背景大帽子-->从替代燃料引入醇类燃料再引入正丁醇-->再引入正丁醇与氢气掺烧,提出如何降低NOx排放-->引 …
a brief introduction后的介词到底是about还是of还是to啊? - 知乎
知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业 …
如何仅从Introduction看出一篇文献的水平? - 知乎
introduction大致对应 ’background on the field‘ 这一部分。 个人认为,取决于文章的目的,是填补了研究领域空白,还是更新了人们对某个现象的认知,或者精进了某种工具,做出了重大预 …
毕业学术论文的英文摘要中,“本文提出”一般怎么翻译? - 知乎
针对硕士毕业论文中文摘要中“文本提出”几个字的翻译,比较权威,正式,符合论文学术规范的翻译为“this thesis(dissertation)proposes (puts forward/brings forward/presents) that…”.切勿 …
word choice - What do you call a note that gives preliminary ...
Feb 2, 2015 · A suitable word for your brief introduction is preamble. It's not as formal as preface, and can be as short as a sentence (which would be unusual for a preface). Preamble can be …
What does "something 101" mean? [closed] - English Language
So, for example, "Wine 101" = "Introduction to wine for the novice", "Wine ABC" = "Getting into wine, step by step", and "Wine A to Z" = "Everything you need to know about wine" – Jonathan …
怎样写好英文论文的 Introduction 部分呢? - 知乎
Introduction应该是一篇论文中最难写的一部分,也是最重要的。“A good introduction will “sell” the study to editors, …
Difference between "introduction to" and "introd…
May 22, 2011 · Here, "Introduction of" refers to bringing something into a place or situation. "Can you give me …
Differences between summary, abstract, overview, and synop…
Feb 12, 2014 · I like Professor David Barnhill's argument for precis: "A precis is a brief summary of a larger work. …
怎样写好英文论文的 Introduction 部分? - 知乎
Why An Introduction Is Needed? 「从文章的大结构来看Introduction提出了你的研究问题,这个问题的答案应该在文章 …
科学引文索引(SCI)论文的引言(Introduction)怎么写? - 知乎
Introduction一共分为8段,属于标准的Introduction层层递进的写作模式:大背景大帽子-->从替代燃料引入醇类燃料再引入正 …