Advertisement
algebraic topology from a homotopical viewpoint: Algebraic Topology from a Homotopical Viewpoint Marcelo Aguilar, Samuel Gitler, Carlos Prieto, 2002-06-13 The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology. |
algebraic topology from a homotopical viewpoint: Algebraic Topology from a Homotopical Viewpoint Marcelo Aguilar, Samuel Gitler, Carlos Prieto, 2008-02-02 The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology. |
algebraic topology from a homotopical viewpoint: Algebraic Topology from a Homotopical Viewpoint Marcelo Aguilar, Samuel Gitler, Carlos Prieto, 2013-06-03 The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology. |
algebraic topology from a homotopical viewpoint: Homotopy Theory: An Introduction to Algebraic Topology , 1975-11-12 Homotopy Theory: An Introduction to Algebraic Topology |
algebraic topology from a homotopical viewpoint: A Concise Course in Algebraic Topology J. Peter May, 2019 |
algebraic topology from a homotopical viewpoint: Categorical Homotopy Theory Emily Riehl, 2014-05-26 This categorical perspective on homotopy theory helps consolidate and simplify one's understanding of derived functors, homotopy limits and colimits, and model categories, among others. |
algebraic topology from a homotopical viewpoint: Motivic Homotopy Theory Bjorn Ian Dundas, Marc Levine, P.A. Østvær, Oliver Röndigs, Vladimir Voevodsky, 2007-07-11 This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject. |
algebraic topology from a homotopical viewpoint: From Categories to Homotopy Theory Birgit Richter, 2020-04-16 Bridge the gap between category theory and its applications in homotopy theory with this guide for graduate students and researchers. |
algebraic topology from a homotopical viewpoint: Two-Dimensional Homotopy and Combinatorial Group Theory Cynthia Hog-Angeloni, Wolfgang Metzler, Allan J. Sieradski, 1993-12-09 Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers. |
algebraic topology from a homotopical viewpoint: Homotopy of Operads and Grothendieck-Teichmuller Groups Benoit Fresse, 2017-04-21 The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads. |
algebraic topology from a homotopical viewpoint: Towards Higher Categories John C. Baez, J. Peter May, 2009-09-24 The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development. |
algebraic topology from a homotopical viewpoint: Homotopical Topology Anatoly Fomenko, Dmitry Fuchs, 2018-05-30 This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck). |
algebraic topology from a homotopical viewpoint: Recent Developments in Algebraic Topology Samuel Gitler, Alejandro Adem, Jesús González, Guillermo Pastor, 2006 This book is an excellent illustration of the versatility of Algebraic Topology interacting with other areas in Mathematics and Physics. Topics discussed in this volume range from classical Differential Topology and Homotopy Theory (Kervaire invariant one problem) to more recent lines of research such as Topological Quantum Field Theory (string theory). Likewise, alternative viewpoints on classical problems in Global Analysis and Dynamical Systems are developed (a spectral sequence approach to normal form theory). This collection of papers is based on talks at the conference on the occasion of Sam Gitler's 70th birthday (December, 2003). The variety of topics covered in this book reflects the many areas where Sam Gitler's contributions have had an impact. |
algebraic topology from a homotopical viewpoint: Basic Algebraic Topology and its Applications Mahima Ranjan Adhikari, 2016-09-16 This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. The book studies a variety of maps, which are continuous functions between spaces. It also reveals the importance of algebraic topology in contemporary mathematics, theoretical physics, computer science, chemistry, economics, and the biological and medical sciences, and encourages students to engage in further study. |
algebraic topology from a homotopical viewpoint: Computational Homology Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, 2006-04-18 Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics. |
algebraic topology from a homotopical viewpoint: Foundations of Algebraic Topology Samuel Eilenberg, Norman Steenrod, 2015-12-08 The need for an axiomatic treatment of homology and cohomology theory has long been felt by topologists. Professors Eilenberg and Steenrod present here for the first time an axiomatization of the complete transition from topology to algebra. Originally published in 1952. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. |
algebraic topology from a homotopical viewpoint: Algebraic Models in Geometry Yves Félix, John Oprea, Daniel Tanré, 2008-03-13 Rational homotopy is a very powerful tool for differential topology and geometry. This text aims to provide graduates and researchers with the tools necessary for the use of rational homotopy in geometry. Algebraic Models in Geometry has been written for topologists who are drawn to geometrical problems amenable to topological methods and also for geometers who are faced with problems requiring topological approaches and thus need a simple and concrete introduction to rational homotopy. This is essentially a book of applications. Geodesics, curvature, embeddings of manifolds, blow-ups, complex and Kähler manifolds, symplectic geometry, torus actions, configurations and arrangements are all covered. The chapters related to these subjects act as an introduction to the topic, a survey, and a guide to the literature. But no matter what the particular subject is, the central theme of the book persists; namely, there is a beautiful connection between geometry and rational homotopy which both serves to solve geometric problems and spur the development of topological methods. |
algebraic topology from a homotopical viewpoint: A Basic Course in Algebraic Topology William S. Massey, 2019-06-28 This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date. |
algebraic topology from a homotopical viewpoint: More Concise Algebraic Topology J. P. May, K. Ponto, 2012-02 With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras. |
algebraic topology from a homotopical viewpoint: Lectures on Field Theory and Topology Daniel S. Freed, 2019-08-23 These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics. |
algebraic topology from a homotopical viewpoint: Modern Classical Homotopy Theory Jeffrey Strom, 2023-01-19 The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments. |
algebraic topology from a homotopical viewpoint: Abstract Homotopy and Simple Homotopy Theory Klaus Heiner Kamps, Timothy Porter, 1997 This book provides a thorough and well-written guide to abstract homotopy theory. It could well serve as a graduate text in this topic, or could be studied independently by someone with a background in basic algebra, topology, and category theory. |
algebraic topology from a homotopical viewpoint: Algebraic Topology of Finite Topological Spaces and Applications Jonathan A. Barmak, 2011-08-24 This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology. |
algebraic topology from a homotopical viewpoint: Motivic Homotopy Theory Bjørn Ian Dundas, 2007 This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work. |
algebraic topology from a homotopical viewpoint: Simplicial Objects in Algebraic Topology J. P. May, 1992 Simplicial sets are discrete analogs of topological spaces. They have played a central role in algebraic topology ever since their introduction in the late 1940s, and they also play an important role in other areas such as geometric topology and algebraic geometry. On a formal level, the homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces. In view of this equivalence, one can apply discrete, algebraic techniques to perform basic topological constructions. These techniques are particularly appropriate in the theory of localization and completion of topological spaces, which was developed in the early 1970s. Since it was first published in 1967, Simplicial Objects in Algebraic Topology has been the standard reference for the theory of simplicial sets and their relationship to the homotopy theory of topological spaces. J. Peter May gives a lucid account of the basic homotopy theory of simplicial sets, together with the equivalence of homotopy theories alluded to above. The central theme is the simplicial approach to the theory of fibrations and bundles, and especially the algebraization of fibration and bundle theory in terms of twisted Cartesian products. The Serre spectral sequence is described in terms of this algebraization. Other topics treated in detail include Eilenberg-MacLane complexes, Postnikov systems, simplicial groups, classifying complexes, simplicial Abelian groups, and acyclic models. Simplicial Objects in Algebraic Topology presents much of the elementary material of algebraic topology from the semi-simplicial viewpoint. It should prove very valuable to anyone wishing to learn semi-simplicial topology. [May] has included detailed proofs, and he has succeeded very well in the task of organizing a large body of previously scattered material.—Mathematical Review |
algebraic topology from a homotopical viewpoint: Algebraic Topology - Homotopy and Homology Robert M. Switzer, 2017-12-01 From the reviews: The author has attempted an ambitious and most commendable project. He assumes only a modest knowledge of algebraic topology on the part of the reader to start with, and he leads the reader systematically to the point at which he can begin to tackle problems in the current areas of research centered around generalized homology theories and their applications. ... The author has sought to make his treatment complete and he has succeeded. The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. ... This book is, all in all, a very admirable work and a valuable addition to the literature... (S.Y. Husseini in Mathematical Reviews, 1976) |
algebraic topology from a homotopical viewpoint: Algebraic Topology Allen Hatcher, 2002 In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book. |
algebraic topology from a homotopical viewpoint: The Influence of Solomon Lefschetz in Geometry and Topology Ernesto Lupercio, Francisco J. Turrubiates, 2014-08-05 The influence of Solomon Lefschetz (1884-1972) in geometry and topology 40 years after his death has been very profound. Lefschetz's influence in Mexican mathematics has been even greater. In this volume, celebrating 50 years of mathematics at Cinvestav-México, many of the fields of geometry and topology are represented by some of the leaders of their respective fields. This volume opens with Michael Atiyah reminiscing about his encounters with Lefschetz and México. Topics covered in this volume include symplectic flexibility, Chern-Simons theory and the theory of classical theta functions, toric topology, the Beilinson conjecture for finite-dimensional associative algebras, partial monoids and Dold-Thom functors, the weak b-principle, orbit configuration spaces, equivariant extensions of differential forms for noncompact Lie groups, dynamical systems and categories, and the Nahm pole boundary condition. |
algebraic topology from a homotopical viewpoint: Topology II D.B. Fuchs, O.Ya. Viro, 2013-03-09 to Homotopy Theory O. Ya. Viro, D. B. Fuchs Translated from the Russian by C. J. Shaddock Contents Chapter 1. Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 § 1. Terminology and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 1. Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. Logical Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3. Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 4. Operations on Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5. Operations on Pointed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 §2. Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 1. Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 10 2. 2. Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 3. Homotopy as a Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 4. Homotopy Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 5. Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 6. Deformation Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. 7. Relative Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 8. k-connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 9. Borsuk Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 10. CNRS Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. 11. Homotopy Properties of Topological Constructions . . . . . . . . . . . 15 2. 12. Natural Group Structures on Sets of Homotopy Classes . . . . . . . . 16 §3. Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. 1. Absolute Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 O. Ya. Viro, D. B. Fuchs 3. 2. Digression: Local Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. 3. Local Systems of Homotopy Groups of a Topological Space . . . . 23 3. 4. Relative Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. 5. The Homotopy Sequence of a Pair . . . . . . . . . . . . . . . . . . . . . . . . . 28 3. 6. Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3. 7. The Homotopy Sequence of a Triple . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 2. Bundle Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 33 §4. Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. 1. General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. 2. Locally Trivial Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4. 3. Serre Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4. 4. Bundles of Spaces of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 §5. Bundles and Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5. 1. The Local System of Homotopy Groups of the Fibres of a Serre Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |
algebraic topology from a homotopical viewpoint: Topology Tai-Danae Bradley, Tyler Bryson, John Terilla, 2020-08-18 A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory—a contemporary branch of mathematics that provides a way to represent abstract concepts—both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics. After presenting the basics of both category theory and topology, the book covers the universal properties of familiar constructions and three main topological properties—connectedness, Hausdorff, and compactness. It presents a fine-grained approach to convergence of sequences and filters; explores categorical limits and colimits, with examples; looks in detail at adjunctions in topology, particularly in mapping spaces; and examines additional adjunctions, presenting ideas from homotopy theory, the fundamental groupoid, and the Seifert van Kampen theorem. End-of-chapter exercises allow students to apply what they have learned. The book expertly guides students of topology through the important transition from undergraduate student with a solid background in analysis or point-set topology to graduate student preparing to work on contemporary problems in mathematics. |
algebraic topology from a homotopical viewpoint: Cubical Homotopy Theory Brian A. Munson, Ismar Volić, 2015-10-06 A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces. |
algebraic topology from a homotopical viewpoint: Homotopic Topology Anatolij T. Fomenko, D. B. Fuchs, V. L. Gutenmacher, 1986 |
algebraic topology from a homotopical viewpoint: Analysis, Geometry and Topology of Elliptic Operators Bernhelm Booss, Krzysztof P. Wojciechowski, 2006 Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics. The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski''s work in the theory of elliptic operators. Sample Chapter(s). Contents (42 KB). Contents: On the Mathematical Work of Krzysztof P Wojciechowski: Selected Aspects of the Mathematical Work of Krzysztof P Wojciechowski (M Lesch); Gluing Formulae of Spectral Invariants and Cauchy Data Spaces (J Park); Topological Theories: The Behavior of the Analytic Index under Nontrivial Embedding (D Bleecker); Critical Points of Polynomials in Three Complex Variables (L I Nicolaescu); Chern-Weil Forms Associated with Superconnections (S Paycha & S Scott); Heat Kernel Calculations and Surgery: Non-Laplace Type Operators on Manifolds with Boundary (I G Avramidi); Eta Invariants for Manifold with Boundary (X Dai); Heat Kernels of the Sub-Laplacian and the Laplacian on Nilpotent Lie Groups (K Furutani); Remarks on Nonlocal Trace Expansion Coefficients (G Grubb); An Anomaly Formula for L 2- Analytic Torsions on Manifolds with Boundary (X Ma & W Zhang); Conformal Anomalies via Canonical Traces (S Paycha & S Rosenberg); Noncommutative Geometry: An Analytic Approach to Spectral Flow in von Neumann Algebras (M-T Benameur et al.); Elliptic Operators on Infinite Graphs (J Dodziuk); A New Kind of Index Theorem (R G Douglas); A Note on Noncommutative Holomorphic and Harmonic Functions on the Unit Disk (S Klimek); Star Products and Central Extensions (J Mickelsson); An Elementary Proof of the Homotopy Equivalence between the Restricted General Linear Group and the Space of Fredholm Operators (T Wurzbacher); Theoretical Particle, String and Membrane Physics, and Hamiltonian Dynamics: T-Duality for Non-Free Circle Actions (U Bunke & T Schick); A New Spectral Cancellation in Quantum Gravity (G Esposito et al.); A Generalized Morse Index Theorem (C Zhu). Readership: Researchers in modern global analysis and particle physics. |
algebraic topology from a homotopical viewpoint: Analysis, Geometry And Topology Of Elliptic Operators: Papers In Honor Of Krzysztof P Wojciechowski Matthias Lesch, Weiping Zhang, Slawomir Klimek, Bernhelm Booss-bavnbek, 2006-04-25 Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators. |
algebraic topology from a homotopical viewpoint: Variations on a Theme of Borel Shmuel Weinberger, 2022-12-08 Explains, using examples, the central role of the fundamental group in the geometry, global analysis, and topology of manifolds. |
algebraic topology from a homotopical viewpoint: Higher Categories and Homotopical Algebra Denis-Charles Cisinski, 2019 This book provides an introduction to modern homotopy theory through the lens of higher categories after Joyal and Lurie, giving access to methods used at the forefront of research in algebraic topology and algebraic geometry in the twenty-first century. The text starts from scratch - revisiting results from classical homotopy theory such as Serre's long exact sequence, Quillen's theorems A and B, Grothendieck's smooth/proper base change formulas, and the construction of the Kan-Quillen model structure on simplicial sets - and develops an alternative to a significant part of Lurie's definitive reference Higher Topos Theory, with new constructions and proofs, in particular, the Yoneda Lemma and Kan extensions. The strong emphasis on homotopical algebra provides clear insights into classical constructions such as calculus of fractions, homotopy limits and derived functors. For graduate students and researchers from neighbouring fields, this book is a user-friendly guide to advanced tools that the theory provides for application. |
algebraic topology from a homotopical viewpoint: Introduction to Stable Homotopy Theory David Barnes, Constanze Roitzheim, 2020-03-26 A comprehensive introduction to stable homotopy theory for beginning graduate students, from motivating phenomena to current research. |
algebraic topology from a homotopical viewpoint: A Taste of Topology Volker Runde, 2007-12-07 This should be a revelation for mathematics undergraduates. Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology, as well as some algebraic topology. It is accessible to undergraduates from the second year on, and even beginning graduate students can benefit from some sections. The well-chosen selection of examples is accessible to students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective. |
algebraic topology from a homotopical viewpoint: Algebra: Chapter 0 Paolo Aluffi, 2021-11-09 Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references. |
algebraic topology from a homotopical viewpoint: An Invitation to Algebraic Geometry Karen E. Smith, Lauri Kahanpää, Pekka Kekäläinen, William Traves, 2013-03-09 The aim of this book is to describe the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra. |
Algebra - Wikipedia
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of …
Algebraic Expression - Definition, Examples, Parts, & Formulas
May 30, 2024 · Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical …
ALGEBRAIC | English meaning - Cambridge Dictionary
Quantitative, algebraic reasoning lies behind modern economics. I’m looking for a font on my computer with standard algebraic symbols. The same algebraic equations that predict the size …
ALGEBRAIC Definition & Meaning - Merriam-Webster
The meaning of ALGEBRAIC is relating to, involving, or according to the laws of algebra. How to use algebraic in a sentence.
Khan Academy
Learn algebra—variables, equations, functions, graphs, and more.
Algebraic - definition of algebraic by The Free Dictionary
Define algebraic. algebraic synonyms, algebraic pronunciation, algebraic translation, English dictionary definition of algebraic. adj. 1. Of, relating to, or designating algebra. 2. Designating …
1.4: Algebraic Expressions and Formulas - Mathematics LibreTexts
Oct 6, 2021 · Identify the parts of an algebraic expression. Apply the distributive property. Evaluate algebraic expressions. Use formulas that model common applications.
ALGEBRAIC Definition & Meaning - Dictionary.com
Mathematics. of or relating to an element that is the root of a polynomial equation with coefficients from some given field. is algebraic over the field of real numbers. using arbitrary letters or …
Algebraic Expressions in Math: Definition, Example and Equation
Apr 11, 2025 · Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used …
What is Algebra? Definition, Basics, Examples, Facts - SplashLearn
Algebra is the part of mathematics that helps represent problems or situations in the form of mathematical expressions. In algebra, we use numbers like 2, −7, 0.068 etc., which have a …
Algebra - Wikipedia
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of …
Algebraic Expression - Definition, Examples, Parts, & Formulas
May 30, 2024 · Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical …
ALGEBRAIC | English meaning - Cambridge Dictionary
Quantitative, algebraic reasoning lies behind modern economics. I’m looking for a font on my computer with standard algebraic symbols. The same algebraic equations that predict the size …
ALGEBRAIC Definition & Meaning - Merriam-Webster
The meaning of ALGEBRAIC is relating to, involving, or according to the laws of algebra. How to use algebraic in a sentence.
Khan Academy
Learn algebra—variables, equations, functions, graphs, and more.
Algebraic - definition of algebraic by The Free Dictionary
Define algebraic. algebraic synonyms, algebraic pronunciation, algebraic translation, English dictionary definition of algebraic. adj. 1. Of, relating to, or designating algebra. 2. Designating …
1.4: Algebraic Expressions and Formulas - Mathematics LibreTexts
Oct 6, 2021 · Identify the parts of an algebraic expression. Apply the distributive property. Evaluate algebraic expressions. Use formulas that model common applications.
ALGEBRAIC Definition & Meaning - Dictionary.com
Mathematics. of or relating to an element that is the root of a polynomial equation with coefficients from some given field. is algebraic over the field of real numbers. using arbitrary letters or …
Algebraic Expressions in Math: Definition, Example and Equation
Apr 11, 2025 · Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used …
What is Algebra? Definition, Basics, Examples, Facts - SplashLearn
Algebra is the part of mathematics that helps represent problems or situations in the form of mathematical expressions. In algebra, we use numbers like 2, −7, 0.068 etc., which have a …