Algebraic Topology Online Course

Advertisement



  algebraic topology online course: A First Course in Algebraic Topology Czes Kosniowski, 1980-09-25 This self-contained introduction to algebraic topology is suitable for a number of topology courses. It consists of about one quarter 'general topology' (without its usual pathologies) and three quarters 'algebraic topology' (centred around the fundamental group, a readily grasped topic which gives a good idea of what algebraic topology is). The book has emerged from courses given at the University of Newcastle-upon-Tyne to senior undergraduates and beginning postgraduates. It has been written at a level which will enable the reader to use it for self-study as well as a course book. The approach is leisurely and a geometric flavour is evident throughout. The many illustrations and over 350 exercises will prove invaluable as a teaching aid. This account will be welcomed by advanced students of pure mathematics at colleges and universities.
  algebraic topology online course: Algebraic Topology Marvin J. Greenberg, 2018-03-05 Great first book on algebraic topology. Introduces (co)homology through singular theory.
  algebraic topology online course: A Concise Course in Algebraic Topology J. Peter May, 2019
  algebraic topology online course: Algebraic Topology Allen Hatcher, 2002 In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book.
  algebraic topology online course: Algebraic Topology Satya Deo, 2003-12-01
  algebraic topology online course: Basic Algebraic Topology Anant R. Shastri, 2013-10-23 Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincaré duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Čech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz’s isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre’s seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.
  algebraic topology online course: Lecture Notes in Algebraic Topology James Frederic Davis, Paul Kirk, 2001 The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic andgeometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, someknowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstructiontheory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to presentproofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, andhomological algebra. The exposition in the text is clear; special cases are presented over complex general statements.
  algebraic topology online course: A Basic Course in Algebraic Topology William S. Massey, 2019-06-28 This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.
  algebraic topology online course: Algebraic Topology Kevin P. Knudson, 2024-08-19 This book is ideal as an introduction to algebraic topology and applied algebraic topology featuring a streamlined approach including coverage of basic categorical notions, simplicial, cellular, and singular homology, persistent homology, cohomology groups, cup products, Poincare Duality, homotopy theory, and spectral sequences. The focus is on examples and computations, and there are many end of chapter exercises and extensive student projects.
  algebraic topology online course: Homology Theory James W. Vick, 1994-01-07 This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
  algebraic topology online course: Topology Through Inquiry Michael Starbird, Francis Su, 2020-09-10 Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.
  algebraic topology online course: Simplicial Homotopy Theory Paul Gregory Goerss, J. F. Jardine, 1999 Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.
  algebraic topology online course: Topology Tai-Danae Bradley, Tyler Bryson, John Terilla, 2020-08-18 A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory—a contemporary branch of mathematics that provides a way to represent abstract concepts—both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics. After presenting the basics of both category theory and topology, the book covers the universal properties of familiar constructions and three main topological properties—connectedness, Hausdorff, and compactness. It presents a fine-grained approach to convergence of sequences and filters; explores categorical limits and colimits, with examples; looks in detail at adjunctions in topology, particularly in mapping spaces; and examines additional adjunctions, presenting ideas from homotopy theory, the fundamental groupoid, and the Seifert van Kampen theorem. End-of-chapter exercises allow students to apply what they have learned. The book expertly guides students of topology through the important transition from undergraduate student with a solid background in analysis or point-set topology to graduate student preparing to work on contemporary problems in mathematics.
  algebraic topology online course: Algebraic Topology Edwin H. Spanier, Edwin Henry Spanier, 1989 This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.
  algebraic topology online course: Basic Topology M.A. Armstrong, 2013-04-09 In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject.
  algebraic topology online course: A Taste of Topology Volker Runde, 2007-12-07 This should be a revelation for mathematics undergraduates. Having evolved from Runde’s notes for an introductory topology course at the University of Alberta, this essential text provides a concise introduction to set-theoretic topology, as well as some algebraic topology. It is accessible to undergraduates from the second year on, and even beginning graduate students can benefit from some sections. The well-chosen selection of examples is accessible to students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In places, Runde’s text treats its material differently to other books on the subject, providing a fresh perspective.
  algebraic topology online course: Introduction to Topology V. A. Vasilʹev, 2001 This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, homology and cohomology, intersection index, etc. The author notes, The lecture note origins of the book left a significant imprint on itsstyle. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs. He concludes, As a rule, only those proofs (or sketches of proofs) that are interesting per se and have importantgeneralizations are presented.
  algebraic topology online course: Differential Algebraic Topology Matthias Kreck, 2010 This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard's theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincare duality, is almost a triviality in this approach. Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch's signature theorem and presents as a highlight Milnor's exotic 7-spheres. This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.
  algebraic topology online course: Topology II D.B. Fuchs, O.Ya. Viro, 2013-03-09 to Homotopy Theory O. Ya. Viro, D. B. Fuchs Translated from the Russian by C. J. Shaddock Contents Chapter 1. Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 § 1. Terminology and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 1. Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. Logical Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3. Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 4. Operations on Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5. Operations on Pointed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 §2. Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 1. Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 10 2. 2. Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 3. Homotopy as a Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 4. Homotopy Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 5. Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 6. Deformation Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2. 7. Relative Homotopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 8. k-connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 9. Borsuk Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 10. CNRS Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. 11. Homotopy Properties of Topological Constructions . . . . . . . . . . . 15 2. 12. Natural Group Structures on Sets of Homotopy Classes . . . . . . . . 16 §3. Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. 1. Absolute Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 O. Ya. Viro, D. B. Fuchs 3. 2. Digression: Local Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. 3. Local Systems of Homotopy Groups of a Topological Space . . . . 23 3. 4. Relative Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. 5. The Homotopy Sequence of a Pair . . . . . . . . . . . . . . . . . . . . . . . . . 28 3. 6. Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3. 7. The Homotopy Sequence of a Triple . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 2. Bundle Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 33 §4. Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. 1. General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. 2. Locally Trivial Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4. 3. Serre Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4. 4. Bundles of Spaces of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 §5. Bundles and Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5. 1. The Local System of Homotopy Groups of the Fibres of a Serre Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  algebraic topology online course: Elementary Applied Topology Robert W. Ghrist, 2014 This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences.
  algebraic topology online course: Elementary Concepts of Topology Paul Alexandroff, 2012-08-13 Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.
  algebraic topology online course: Differential Forms in Algebraic Topology Raoul Bott, Loring W. Tu, 2013-04-17 Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
  algebraic topology online course: Algebraic Topology: A Structural Introduction Marco Grandis, 2021-12-24 Algebraic Topology is a system and strategy of partial translations, aiming to reduce difficult topological problems to algebraic facts that can be more easily solved. The main subject of this book is singular homology, the simplest of these translations. Studying this theory and its applications, we also investigate its underlying structural layout - the topics of Homological Algebra, Homotopy Theory and Category Theory which occur in its foundation.This book is an introduction to a complex domain, with references to its advanced parts and ramifications. It is written with a moderate amount of prerequisites — basic general topology and little else — and a moderate progression starting from a very elementary beginning. A consistent part of the exposition is organised in the form of exercises, with suitable hints and solutions.It can be used as a textbook for a semester course or self-study, and a guidebook for further study.
  algebraic topology online course: Algebraic Topology of Finite Topological Spaces and Applications Jonathan A. Barmak, 2011-08-24 This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
  algebraic topology online course: Algebraic Topology William Fulton, 1997-09-05 To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups
  algebraic topology online course: Lectures on Algebraic Topology Albrecht Dold, 2012-12-06 Springer is reissuing a selected few highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. Springer-Verlag began publishing books in higher mathematics in 1920. This is a reprint of the Second Edition.
  algebraic topology online course: Classical Topology and Combinatorial Group Theory John Stillwell, 2012-12-06 In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment undergraduate topology proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.
  algebraic topology online course: Basic Category Theory Tom Leinster, 2014-07-24 A short introduction ideal for students learning category theory for the first time.
  algebraic topology online course: Algebraic Topology from a Homotopical Viewpoint Marcelo Aguilar, Samuel Gitler, Carlos Prieto, 2008-02-02 The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.
  algebraic topology online course: Undergraduate Algebraic Geometry Miles Reid, 1988-12-15 Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.
  algebraic topology online course: Computational Topology for Data Analysis Tamal Krishna Dey, Yusu Wang, 2022-03-10 This book provides a computational and algorithmic foundation for techniques in topological data analysis, with examples and exercises.
  algebraic topology online course: Topology and Geometry Glen E. Bredon, 2014-09-01
  algebraic topology online course: Essential Topology Martin D. Crossley, 2011-02-11 This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.
  algebraic topology online course: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.
  algebraic topology online course: Topology of Surfaces L.Christine Kinsey, 2012-12-06 . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.
  algebraic topology online course: Introduction to Topology Theodore W. Gamelin, Robert Everist Greene, 2013-04-22 This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.
  algebraic topology online course: Elements Of Algebraic Topology James R. Munkres, James R Munkres, 2018-03-05 Elements of Algebraic Topology provides the most concrete approach to the subject. With coverage of homology and cohomology theory, universal coefficient theorems, Kunneth theorem, duality in manifolds, and applications to classical theorems of point-set topology, this book is perfect for comunicating complex topics and the fun nature of algebraic topology for beginners.
  algebraic topology online course: An Introduction to Algebraic Topology Andrew H. Wallace, 2011-11-30 This self-contained treatment begins with three chapters on the basics of point-set topology, after which it proceeds to homology groups and continuous mapping, barycentric subdivision, and simplicial complexes. 1961 edition.
  algebraic topology online course: Basic Concepts of Algebraic Topology F.H. Croom, 2012-12-06 This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require mathematical maturity beyond the junior level.
  algebraic topology online course: More Concise Algebraic Topology J. P. May, K. Ponto, 2012-02 With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
Algebra - Wikipedia
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of …

Algebraic Expression - Definition, Examples, Parts, & Formulas
May 30, 2024 · Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical …

ALGEBRAIC | English meaning - Cambridge Dictionary
Quantitative, algebraic reasoning lies behind modern economics. I’m looking for a font on my computer with standard algebraic symbols. The same algebraic equations that predict the size …

ALGEBRAIC Definition & Meaning - Merriam-Webster
The meaning of ALGEBRAIC is relating to, involving, or according to the laws of algebra. How to use algebraic in a sentence.

Khan Academy
Learn algebra—variables, equations, functions, graphs, and more.

Algebraic - definition of algebraic by The Free Dictionary
Define algebraic. algebraic synonyms, algebraic pronunciation, algebraic translation, English dictionary definition of algebraic. adj. 1. Of, relating to, or designating algebra. 2. Designating …

1.4: Algebraic Expressions and Formulas - Mathematics LibreTexts
Oct 6, 2021 · Identify the parts of an algebraic expression. Apply the distributive property. Evaluate algebraic expressions. Use formulas that model common applications.

ALGEBRAIC Definition & Meaning - Dictionary.com
Mathematics. of or relating to an element that is the root of a polynomial equation with coefficients from some given field. is algebraic over the field of real numbers. using arbitrary letters or …

Algebraic Expressions in Math: Definition, Example and Equation
Apr 11, 2025 · Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used …

What is Algebra? Definition, Basics, Examples, Facts - SplashLearn
Algebra is the part of mathematics that helps represent problems or situations in the form of mathematical expressions. In algebra, we use numbers like 2, −7, 0.068 etc., which have a …

Algebra - Wikipedia
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of …

Algebraic Expression - Definition, Examples, Parts, & Formulas
May 30, 2024 · Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical …

ALGEBRAIC | English meaning - Cambridge Dictionary
Quantitative, algebraic reasoning lies behind modern economics. I’m looking for a font on my computer with standard algebraic symbols. The same algebraic equations that predict the size …

ALGEBRAIC Definition & Meaning - Merriam-Webster
The meaning of ALGEBRAIC is relating to, involving, or according to the laws of algebra. How to use algebraic in a sentence.

Khan Academy
Learn algebra—variables, equations, functions, graphs, and more.

Algebraic - definition of algebraic by The Free Dictionary
Define algebraic. algebraic synonyms, algebraic pronunciation, algebraic translation, English dictionary definition of algebraic. adj. 1. Of, relating to, or designating algebra. 2. Designating …

1.4: Algebraic Expressions and Formulas - Mathematics LibreTexts
Oct 6, 2021 · Identify the parts of an algebraic expression. Apply the distributive property. Evaluate algebraic expressions. Use formulas that model common applications.

ALGEBRAIC Definition & Meaning - Dictionary.com
Mathematics. of or relating to an element that is the root of a polynomial equation with coefficients from some given field. is algebraic over the field of real numbers. using arbitrary letters or …

Algebraic Expressions in Math: Definition, Example and Equation
Apr 11, 2025 · Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used …

What is Algebra? Definition, Basics, Examples, Facts - SplashLearn
Algebra is the part of mathematics that helps represent problems or situations in the form of mathematical expressions. In algebra, we use numbers like 2, −7, 0.068 etc., which have a …