Advertisement
a terse introduction to linear algebra: A (Terse) Introduction to Linear Algebra Yitzhak Katznelson, Yonatan R. Katznelson, 2008 Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications. |
a terse introduction to linear algebra: Introduction to Linear Algebra Serge Lang, 2012-12-06 This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual. |
a terse introduction to linear algebra: A (Terse) Introduction to Lebesgue Integration John M. Franks, 2009 This book provides a student's first encounter with the concepts of measure theory and functional analysis. Its structure and content reflect the belief that difficult concepts should be introduced in their simplest and most concrete forms. Despite the use of the word 'terse' in the title, this text might also have been called A (Gentle) Introduction to Lebesgue Integration. It is terse in the sense that it treats only a subset of those concepts typically found in a substantial graduate-level analysis course. The book emphasizes the motivation of these concepts and attempts to treat them simply and concretely. In particular, little mention is made of general measures other than Lebesgue until the final chapter and attention is limited to R as opposed to Rn. After establishing the primary ideas and results, the text moves on to some applications. Chapter 6 discusses classical real and complex Fourier series for L2 functions on the interval and shows that the Fourier series of an L2 function converges in L2 to that function. Chapter 7 introduces some concepts from measurable dynamics. The Birkhoff ergodic theorem is stated without proof and results on Fourier series from chapter 6 are used to prove that an irrational rotation of the circle is ergodic and that the squaring map on the complex numbers of modulus 1 is ergodic. This book is suitable for an advanced undergraduate course or for the start of a graduate course. The text presupposes that the student has had a standard undergraduate course in real analysis. |
a terse introduction to linear algebra: Numerical Linear Algebra Holger Wendland, 2018 This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems. |
a terse introduction to linear algebra: Finite-Dimensional Vector Spaces Paul R. Halmos, 2017-05-24 Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. Extremely well-written and logical, with short and elegant proofs. — MAA Reviews. 1958 edition. |
a terse introduction to linear algebra: Linear Algebra As An Introduction To Abstract Mathematics Bruno Nachtergaele, Anne Schilling, Isaiah Lankham, 2015-11-30 This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises. |
a terse introduction to linear algebra: Linear Algebra and Matrices Helene Shapiro, 2015-10-08 Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first course and are interested in learning more advanced results. |
a terse introduction to linear algebra: Functional Analysis Gerardo Chacón, Humberto Rafeiro, Juan Camilo Vallejo, 2016-12-19 This textbook on functional analysis offers a short and concise introduction to the subject. The book is designed in such a way as to provide a smooth transition between elementary and advanced topics and its modular structure allows for an easy assimilation of the content. Starting from a dedicated chapter on the axiom of choice, subsequent chapters cover Hilbert spaces, linear operators, functionals and duality, Fourier series, Fourier transform, the fixed point theorem, Baire categories, the uniform bounded principle, the open mapping theorem, the closed graph theorem, the Hahn–Banach theorem, adjoint operators, weak topologies and reflexivity, operators in Hilbert spaces, spectral theory of operators in Hilbert spaces, and compactness. Each chapter ends with workable problems. The book is suitable for graduate students, but also for advanced undergraduates, in mathematics and physics. Contents: List of Figures Basic Notation Choice Principles Hilbert Spaces Completeness, Completion and Dimension Linear Operators Functionals and Dual Spaces Fourier Series Fourier Transform Fixed Point Theorem Baire Category Theorem Uniform Boundedness Principle Open Mapping Theorem Closed Graph Theorem Hahn–Banach Theorem The Adjoint Operator Weak Topologies and Reflexivity Operators in Hilbert Spaces Spectral Theory of Operators on Hilbert Spaces Compactness Bibliography Index |
a terse introduction to linear algebra: Introduction to Abstract Algebra Benjamin Fine, Anthony M. Gaglione, Gerhard Rosenberger, 2014-07-01 A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic |
a terse introduction to linear algebra: Linear Algebra and Linear Models R. B. Bapat, 2000 This book provides a rigorous introduction to the basic aspects of the theory of linear estimation and hypothesis testing, covering the necessary prerequisites in matrices, multivariate normal distribution and distributions of quadratic forms along the way. It will appeal to advanced undergraduate and first-year graduate students, research mathematicians and statisticians. |
a terse introduction to linear algebra: Linear Algebra for the Young Mathematician Steven H. Weintraub, 2019 Linear Algebra for the Young Mathematician is a careful, thorough, and rigorous introduction to linear algebra. It adopts a conceptual point of view, focusing on the notions of vector spaces and linear transformations, and it takes pains to provide proofs that bring out the essential ideas of the subject. It begins at the beginning, assuming no prior knowledge of the subject, but goes quite far, and it includes many topics not usually treated in introductory linear algebra texts, such as Jordan canonical form and the spectral theorem. While it concentrates on the finite-dimensional case, it treats infinite-dimensional case as well. The book illustrates the centrality of linear algebra by providing numerous examples of its application within mathematics. It contains a wide variety of both conceptual and computational exercises at all levels, from the relatively straightforward to the quite challenging |
a terse introduction to linear algebra: Matrix Theory Fuzhen Zhang, 2013-03-14 The aim of this book is to concisely present fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. The book contains eight chapters covering various topics ranging from similarity and special types of matrices to Schur complements and matrix normality. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The book can be used as a text or a supplement for a linear algebra and matrix theory class or seminar for senior or graduate students. The only prerequisites are a decent background in elementary linear algebra and calculus. The book can also serve as a reference for instructors and researchers in the fields of algebra, matrix analysis, operator theory, statistics, computer science, engineering, operations research, economics, and other fields. |
a terse introduction to linear algebra: Linear Algebra in Action Harry Dym, 2023-06-23 This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized. |
a terse introduction to linear algebra: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning. |
a terse introduction to linear algebra: Introduction to Representation Theory Pavel I. Etingof, Oleg Golberg, Sebastian Hensel , Tiankai Liu , Alex Schwendner , Dmitry Vaintrob , Elena Yudovina , 2011 Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra. |
a terse introduction to linear algebra: Linear Algebra H. E. Rose, 2002 Linear algebra is one of the most important branches of mathematics - important because of its many applications to other areas of mathematics, and important because it contains a wealth of ideas and results which are basic to pure mathematics. This book gives an introduction to linear algebra, and develops and proves its fundamental properties and theorems taking a pure mathematical approach - linear algebra contains some fine pure mathematics. Main topics: - vector spaces and algebras, dimension, linear maps, direct sums, and (briefly) exact sequences - matrices and their connections with linear maps, determinants (properties proved using some elementary group theory), and linear equations - Cayley-Hamilton and Jordan theorems leading to the spectrum of a linear map - this provides a geometric-type description of these maps - Hermitian and inner product spaces introducing some metric properties (distance, perpendicularity etc.) into the theory, also unitary and orthogonal maps and matrices - applications to finite fields, mathematical coding theory, finite matrix groups, the geometry of quadratic forms, quaternions and Cayley numbers, and some basic group representation theory A large number of examples, exercises and problems are provided. Answers and/or sketch solutions to all of the problems are given in an appendix. Some of these are theoretical and some numerical, both types are important. No particular computer algebra package is discussed but a number of the exercises are intended to be solved using one of these packages chosen by the reader.The approach is pure-mathematical, and the intended readership is undergraduate mathematicians, also anyone who requires a more than basic understanding of the subject. This book will be most useful for a second course in linear algebra, that is for students that have seen some elementary matrix algebra. But as all terms are defined from scratch, the book can be used for a first course for more advanced students. |
a terse introduction to linear algebra: A Concrete Introduction to Higher Algebra Lindsay N. Childs, 2008-11-26 This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises are found throughout the book. |
a terse introduction to linear algebra: Linear Algebra and Matrix Theory Evar D. Nering, 1970 |
a terse introduction to linear algebra: Applied Linear Algebra and Matrix Analysis Thomas S. Shores, 2007-08-14 This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises. |
a terse introduction to linear algebra: Random Walk and the Heat Equation Gregory F. Lawler, 2010-11-22 The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas. |
a terse introduction to linear algebra: The Erdos Distance Problem Julia Garibaldi, Alex Iosevich, Steven Senger, 2011 Introduces the reader to the techniques, ideas, and consequences related to the Erdős problem. The authors introduce these concepts in a concrete and elementary way that allows a wide audience to absorb the content and appreciate its far-reaching implications. In the process, the reader is familiarized with a wide range of techniques from several areas of mathematics and can appreciate the power of the resulting symbiosis. |
a terse introduction to linear algebra: Basic Linear Algebra T.S. Blyth, E.F. Robertson, 2013-12-01 Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be ofparticular interest to readers: this will take the form of a tutorial on the use of the LinearAlgebra package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book. |
a terse introduction to linear algebra: Matrix Algebra James E. Gentle, 2007-08-06 Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix. |
a terse introduction to linear algebra: Lectures on Fractal Geometry and Dynamical Systems Ya. B. Pesin, Vaughn Climenhaga, 2009 Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008. |
a terse introduction to linear algebra: A Primer on the Calculus of Variations and Optimal Control Theory Mike Mesterton-Gibbons, 2009 The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory. |
a terse introduction to linear algebra: Vectors, Pure and Applied T. W. Körner, 2013 Explains both the how and the why of linear algebra to get students thinking like mathematicians. |
a terse introduction to linear algebra: Tensors: Geometry and Applications J. M. Landsberg, 2024-11-07 Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies. |
a terse introduction to linear algebra: Volterra Adventures Joel H. Shapiro, 2018-06-14 This book introduces functional analysis to undergraduate mathematics students who possess a basic background in analysis and linear algebra. By studying how the Volterra operator acts on vector spaces of continuous functions, its readers will sharpen their skills, reinterpret what they already know, and learn fundamental Banach-space techniques—all in the pursuit of two celebrated results: the Titchmarsh Convolution Theorem and the Volterra Invariant Subspace Theorem. Exercises throughout the text enhance the material and facilitate interactive study. |
a terse introduction to linear algebra: Geometries Alekseĭ Bronislavovich Sosinskiĭ, 2012 The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics. |
a terse introduction to linear algebra: Computability Theory Rebecca Weber, 2012 What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites. |
a terse introduction to linear algebra: Vectors, Tensors and the Basic Equations of Fluid Mechanics Rutherford Aris, 2012-08-28 Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition. |
a terse introduction to linear algebra: Linear Algebra Via Exterior Products Sergei Winitzki, 2009-07-30 This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, wedge) product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results. |
a terse introduction to linear algebra: Geometric Methods in Signal and Image Analysis Hamid Krim, A. Ben Hamza, 2015-06-18 A comprehensive guide to modern geometric methods for signal and image analysis, from basic principles to state-of-the-art concepts and applications. |
a terse introduction to linear algebra: Undergraduate Algebra Serge Lang, 2013-06-29 This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory. |
a terse introduction to linear algebra: Vectors, Pure and Applied T. W. Körner, 2012-12-13 Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways and how these ways are connected, preparing students for further work in these areas. The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online. |
a terse introduction to linear algebra: Lectures on Quantum Mechanics for Mathematics Students L. D. Faddeev, Oleg Aleksandrovich I︠A︡kubovskiĭ, 2009 Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework. |
a terse introduction to linear algebra: Lectures on Surfaces A. B. Katok, Vaughn Climenhaga, 2008 Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry, topology, complex analysis, Morse theory, and group theory. This book introduces many of the principal actors - the round sphere, flat torus, Mobius strip, and Klein bottle. |
a terse introduction to linear algebra: Linear Algebra and Its Applications Peter D. Lax, 2013-05-20 This set features Linear Algebra and Its Applications, Second Edition (978-0-471-75156-4) Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals. and Functional Analysis (978-0-471-55604-6) both by Peter D. Lax. |
a terse introduction to linear algebra: Multivariable Mathematics Theodore Shifrin, 2004-01-26 Multivariable Mathematics combines linear algebra and multivariable calculus in a rigorous approach. The material is integrated to emphasize the role of linearity in all of calculus and the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author addresses all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible and also including complete proofs. By emphasizing the theoretical aspects and reviewing the linear algebra material quickly, the book can also be used as a text for an advanced calculus or multivariable analysis course culminating in a treatment of manifolds, differential forms, and the generalized Stokes’s Theorem. |
a terse introduction to linear algebra: Applied Linear Algebra Lorenzo Sadun, 2022-06-07 Linear algebra permeates mathematics, as well as physics and engineering. In this text for junior and senior undergraduates, Sadun treats diagonalization as a central tool in solving complicated problems in these subjects by reducing coupled linear evolution problems to a sequence of simpler decoupled problems. This is the Decoupling Principle. Traditionally, difference equations, Markov chains, coupled oscillators, Fourier series, the wave equation, the Schrödinger equation, and Fourier transforms are treated separately, often in different courses. Here, they are treated as particular instances of the decoupling principle, and their solutions are remarkably similar. By understanding this general principle and the many applications given in the book, students will be able to recognize it and to apply it in many other settings. Sadun includes some topics relating to infinite-dimensional spaces. He does not present a general theory, but enough so as to apply the decoupling principle to the wave equation, leading to Fourier series and the Fourier transform. The second edition contains a series of Explorations. Most are numerical labs in which the reader is asked to use standard computer software to look deeper into the subject. Some explorations are theoretical, for instance, relating linear algebra to quantum mechanics. There is also an appendix reviewing basic matrix operations and another with solutions to a third of the exercises. |
TERSE Definition & Meaning - Merriam-Webster
The meaning of TERSE is using few words : devoid of superfluity; also : short, brusque. How to use terse in a sentence. Synonym …
TERSE | English meaning - Cambridge Dictionary
TERSE definition: 1. using few words, sometimes in a way that seems rude or unfriendly: 2. using few words…. Learn more.
TERSE Definition & Meaning | Dictionary.com
neatly or effectively concise; brief and pithy, as language. Synonyms: compendious, epigrammatic, brief, compact, succinct …
Terse - Definition, Meaning & Synonyms | Vocabulary.com
Terse means brief, or using very few words. If your teacher tells you to make your writing in your essay style terse and to the point, …
terse adjective - Definition, pictures, pronunciation and usag…
Definition of terse adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example …
TERSE Definition & Meaning - Merriam-Webster
The meaning of TERSE is using few words : devoid of superfluity; also : short, brusque. How to use terse in a sentence. Synonym Discussion of Terse.
TERSE | English meaning - Cambridge Dictionary
TERSE definition: 1. using few words, sometimes in a way that seems rude or unfriendly: 2. using few words…. …
TERSE Definition & Meaning | Dictionary.com
neatly or effectively concise; brief and pithy, as language. Synonyms: compendious, epigrammatic, brief, …
Terse - Definition, Meaning & Synonyms | Vocabulary.com
Terse means brief, or using very few words. If your teacher tells you to make your writing in your essay style terse and to the point, he's saying use as few words as you can and be simple and …
terse adjective - Definition, pictures, pronunciation and u…
Definition of terse adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.