Advertisement
a course in point set topology: A Course in Point Set Topology John B. Conway, 2013-11-04 This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces. |
a course in point set topology: A Course in Point Set Topology John B. Conway, 2013-11-30 |
a course in point set topology: Point Set Topology Steven A. Gaal, 2009-04-23 Suitable for a complete course in topology, this text also functions as a self-contained treatment for independent study. Additional enrichment materials make it equally valuable as a reference. 1964 edition. |
a course in point set topology: Elements of Point Set Topology John D. Baum, 1991-01-01 Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student. |
a course in point set topology: Elementary Point-Set Topology Andre L. Yandl, Adam Bowers, 2016-04-10 In addition to serving as an introduction to the basics of point-set topology, this text bridges the gap between the elementary calculus sequence and higher-level mathematics courses. The versatile, original approach focuses on learning to read and write proofs rather than covering advanced topics. Based on lecture notes that were developed over many years at The University of Seattle, the treatment is geared toward undergraduate math majors and suitable for a variety of introductory courses. Starting with elementary concepts in logic and basic techniques of proof writing, the text defines topological and metric spaces and surveys continuity and homeomorphism. Additional subjects include product spaces, connectedness, and compactness. The final chapter illustrates topology's use in other branches of mathematics with proofs of the fundamental theorem of algebra and of Picard's existence theorem for differential equations. This is a back-to-basics introductory text in point-set topology that can double as a transition to proofs course. The writing is very clear, not too concise or too wordy. Each section of the book ends with a large number of exercises. The optional first chapter covers set theory and proof methods; if the students already know this material you can start with Chapter 2 to present a straight topology course, otherwise the book can be used as an introduction to proofs course also. — Mathematical Association of America |
a course in point set topology: Topology Tai-Danae Bradley, Tyler Bryson, John Terilla, 2020-08-18 A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory—a contemporary branch of mathematics that provides a way to represent abstract concepts—both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics. After presenting the basics of both category theory and topology, the book covers the universal properties of familiar constructions and three main topological properties—connectedness, Hausdorff, and compactness. It presents a fine-grained approach to convergence of sequences and filters; explores categorical limits and colimits, with examples; looks in detail at adjunctions in topology, particularly in mapping spaces; and examines additional adjunctions, presenting ideas from homotopy theory, the fundamental groupoid, and the Seifert van Kampen theorem. End-of-chapter exercises allow students to apply what they have learned. The book expertly guides students of topology through the important transition from undergraduate student with a solid background in analysis or point-set topology to graduate student preparing to work on contemporary problems in mathematics. |
a course in point set topology: Lecture Notes On General Topology Guoliang Wang, 2020-12-17 This book is intended as a one-semester course in general topology, a.k.a. point-set topology, for undergraduate students as well as first-year graduate students. Such a course is considered a prerequisite for further studying analysis, geometry, manifolds, and certainly, for a career of mathematical research. Researchers may find it helpful especially from the comprehensive indices.General topology resembles a language in modern mathematics. Because of this, the book is with a concentration on basic concepts in general topology, and the presentation is of a brief style, both concise and precise. Though it is hard to determine exactly which concepts therein are basic and which are not, the author makes efforts in the selection according to personal experience on the occurrence frequency of notions in advanced mathematics, and to related books that have received admirable reviews.This book also contains exercises for each chapter with selected solutions. Interrelationships among concepts are taken into account frequently. Twelve particular topological spaces are repeatedly exploited, which serve as examples to learn new concepts based on old ones. |
a course in point set topology: Elementary Topology O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises. |
a course in point set topology: Introduction to Metric and Topological Spaces Wilson A Sutherland, 2009-06-18 One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book. |
a course in point set topology: Introduction to Topology Theodore W. Gamelin, Robert Everist Greene, 2013-04-22 This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition. |
a course in point set topology: Topological Spaces Gerard Buskes, Arnoud van Rooij, 2012-12-06 This book is a text, not a reference, on Point-set Topology. It addresses itself to the student who is proficient in Calculus and has some experience with mathematical rigor, acquired, e.g., via a course in Advanced Calculus or Linear Algebra. To most beginners, Topology offers a double challenge. In addition to the strangeness of concepts and techniques presented by any new subject, there is an abrupt rise of the level of abstraction. It is a bad idea to teach a student two things at the same moment. To mitigate the culture shock, we move from the special to the general, dividing the book into three parts: 1. The Line and the Plane 2. Metric Spaces 3. Topological Spaces. In this way, the student has ample time to get acquainted with new ideas while still on familiar territory. Only after that, the transition to a more abstract point of view takes place. Elementary Topology preeminently is a subject with an extensive array of technical terms indicating properties of topological spaces. In the main body of the text, we have purposely restricted our mathematical vocabulary as much as is reasonably possible. Such an enterprise is risky. Doubtlessly, many readers will find us too thrifty. To meet them halfway, in Chapter 18 we briefly introduce and discuss a number of topological properties, but even there we do not touch on paracompactness, complete normality, and extremal disconnectedness-just to mention three terms that are not really esoteric. |
a course in point set topology: Basic Topology M.A. Armstrong, 2013-04-09 In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject. |
a course in point set topology: Real Analysis with Point-set Topology Donald L. Stancl, Mildred L. Stancl, 1987 |
a course in point set topology: Topology Stefan Waldmann, 2014-08-05 This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course. |
a course in point set topology: Topology Through Inquiry Michael Starbird, Francis Su, 2020-09-10 Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure. |
a course in point set topology: Non-Hausdorff Topology and Domain Theory Jean Goubault-Larrecq, 2013-03-28 Introduces the basic concepts of topology with an emphasis on non-Hausdorff topology, which is crucial for theoretical computer science. |
a course in point set topology: Elements of Topology Tej Bahadur Singh, 2013-05-20 Topology is a large subject with many branches broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad variety of mathematical disciplines. Algebraic topology serves as a powerful tool for studying the problems in geometry and numerous other areas of mathematics. Ele |
a course in point set topology: Introduction to Topology Colin Conrad Adams, Robert David Franzosa, 2008 Learn the basics of point-set topology with the understanding of its real-world application to a variety of other subjects including science, economics, engineering, and other areas of mathematics. Introduces topology as an important and fascinating mathematics discipline to retain the readers interest in the subject. Is written in an accessible way for readers to understand the usefulness and importance of the application of topology to other fields. Introduces topology concepts combined with their real-world application to subjects such DNA, heart stimulation, population modeling, cosmology, and computer graphics. Covers topics including knot theory, degree theory, dynamical systems and chaos, graph theory, metric spaces, connectedness, and compactness. A useful reference for readers wanting an intuitive introduction to topology. |
a course in point set topology: General Topology J. Dixmier, 2013-06-29 This book is a course in general topology, intended for students in the first year of the second cycle (in other words, students in their third univer sity year). The course was taught during the first semester of the 1979-80 academic year (three hours a week of lecture, four hours a week of guided work). Topology is the study of the notions of limit and continuity and thus is, in principle, very ancient. However, we shall limit ourselves to the origins of the theory since the nineteenth century. One of the sources of topology is the effort to clarify the theory of real-valued functions of a real variable: uniform continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass theorem (this work is historically inseparable from the attempts to define with precision what the real numbers are). Cauchy was one of the pioneers in this direction, but the errors that slip into his work prove how hard it was to isolate the right concepts. Cantor came along a bit later; his researches into trigonometric series led him to study in detail sets of points of R (whence the concepts of open set and closed set in R, which in his work are intermingled with much subtler concepts). The foregoing alone does not justify the very general framework in which this course is set. The fact is that the concepts mentioned above have shown themselves to be useful for objects other than the real numbers. |
a course in point set topology: A First Course in Topology John McCleary, 2006 How many dimensions does our universe require for a comprehensive physical description? In 1905, Poincare argued philosophically about the necessity of the three familiar dimensions, while recent research is based on 11 dimensions or even 23 dimensions. The notion of dimension itself presented a basic problem to the pioneers of topology. Cantor asked if dimension was a topological feature of Euclidean space. To answer this question, some important topological ideas were introduced by Brouwer, giving shape to a subject whose development dominated the twentieth century. The basic notions in topology are varied and a comprehensive grounding in point-set topology, the definition and use of the fundamental group, and the beginnings of homology theory requires considerable time.The goal of this book is a focused introduction through these classical topics, aiming throughout at the classical result of the Invariance of Dimension. This text is based on the author's course given at Vassar College and is intended for advanced undergraduate students. It is suitable for a semester-long course on topology for students who have studied real analysis and linear algebra. It is also a good choice for a capstone course, senior seminar, or independent study. |
a course in point set topology: Topology of Surfaces L.Christine Kinsey, 2012-12-06 . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed. |
a course in point set topology: Algebraic Topology: An Intuitive Approach Hajime Satō, 1999 Develops an introduction to algebraic topology mainly through simple examples built on cell complexes. Topics covers include homeomorphisms, topological spaces and cell complexes, homotopy, homology, cohomology, the universal coefficient theorem, fiber bundles and vector bundles, and spectral sequences. Includes chapter summaries, exercises, and answers. Includes an appendix of definitions in sets, topology, and groups. Originally published in Japanese by Iwanami Shoten, Publishers, Tokyo, 1996. Annotation copyrighted by Book News, Inc., Portland, OR |
a course in point set topology: General Topology and Homotopy Theory I.M. James, 2012-12-06 Students of topology rightly complain that much of the basic material in the subject cannot easily be found in the literature, at least not in a convenient form. In this book I have tried to take a fresh look at some of this basic material and to organize it in a coherent fashion. The text is as self-contained as I could reasonably make it and should be quite accessible to anyone who has an elementary knowledge of point-set topology and group theory. This book is based on a course of 16 graduate lectures given at Oxford and elsewhere from time to time. In a course of that length one cannot discuss too many topics without being unduly superficial. However, this was never intended as a treatise on the subject but rather as a short introductory course which will, I hope, prove useful to specialists and non-specialists alike. The introduction contains a description of the contents. No algebraic or differen tial topology is involved, although I have borne in mind the needs of students of those branches of the subject. Exercises for the reader are scattered throughout the text, while suggestions for further reading are contained in the lists of references at the end of each chapter. In most cases these lists include the main sources I have drawn on, but this is not the type of book where it is practicable to give a reference for everything. |
a course in point set topology: Elementary Topology Guilford Spencer, Karo Maestro, Dick Hall, 2019-01-10 This book is an introduction to point set topology for undergraduates. Many of the classic textbooks on the subject cover the subject exhaustively and at the highest possible level of generality. The result of using traditional textbooks has been that students spend 2 semesters learning far more general topology on abstract spaces then most of them will ever need to use or know. More importantly, students get the impression from geometers and topologists in later courses that they wasted a year of their studies learning material that most mathematicians don't even consider topology anymore. This leaves many of them feeling deceived and frustrated. Unfortunately, the reaction has been in recent decades to write elementary topology textbooks that only present the barest minimum of point set topology needed for students in advanced geometry or algebraic topology. Indeed-some recent beginning textbooks in topology largely skip general topology altogether and jump straight into algebraic and geometric topology such as homotopy, curves and surfaces! We believe this ludicrous solution is essentially throwing the baby out with the bathwater. This reissued edition of Hall/ Spencer should seriously be considered by mathematicians as the benchmark for such a course. The book contains what we believe to be approximately the irreducible minimum of point set topology any student of mathematics needs to learn regardless of level or interest. The book is quite detailed, covering sufficient general topology of interest and use for analysts, geometers and topologists. The book falls into two rather distinct parts. The first half is concerned with an introductory study of topological and metric spaces. The basic operations with sets are introduced in Chapter I, relations and mappings are discussed, and an introduction to infinite and uncountable sets is given. Chapter 2 introduces the basic topological structure of the real numbers in a review of basic analysis. In Chapter 3, general topological and metric spaces are introduced and such topics as compactness, separation and continuous functions are discussed. Metric spaces are pursued further in Chapter 4, with discussions of local connectivity, countability, metrizability and completion being included. The second part is less elementary in character. The long Chapter 5 is concerned with giving topological characterizations of arcs, simple closed curves, and simple closed surfaces. Peano spaces are discussed and the Jordan curve theorem and Jordan-Schoenflies theorem are proved. Chapter 6 discusses partitionable spaces, a topic often missing from modern texts. Finally, Chapter 7 discusses the axiom of choice, Zorn's lemma (in the form commonly called the Hausdorff niaximality principle) and the Tychonoff product theorem. The book in particular will help students understand the deep connection between general topology and real and complex analysis. The most natural path towards understanding abstract topological spaces, general continuous mappings and topological invariants on families of open sets is to see how they directly generalize the usual structures of analysis on the real line. Also. Blue Collar Scholar founder/editor Karo Maestro has added his usual personal touch to the new edition, with a new preface on his own reflections on point set topology and recommendations for supplementary or subsequent study. The prerequisites for the text are very minimal-just calculus and some experience with rigorous proofs. This wonderful lost text in this new inexpensive edition will serve a new generation of mathematics students who need to learn this crucial foundational subject with a presentation that's both detailed and informative without being exhaustive. It will indoctrinate students into the beauty and simplicity of point-set topology and convince them of its' intrinsic importance-primarily to analysis, but also to other areas of mathematics. |
a course in point set topology: Principles of Topology Fred H. Croom, 2016-02-17 Originally published: Philadelphia: Saunders College Publishing, 1989; slightly corrected. |
a course in point set topology: Topology for Analysis Albert Wilansky, 2008-10-17 Starting with the first principles of topology, this volume advances to general analysis. Three levels of examples and problems make it appropriate for students and professionals. Abundant exercises, ordered and numbered by degree of difficulty, illustrate important concepts, and a 40-page appendix includes tables of theorems and counterexamples. 1970 edition. |
a course in point set topology: The General Topology of Dynamical Systems Ethan Akin, 1993 Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory. |
a course in point set topology: Introduction to Topology Bert Mendelson, 2012-04-26 Concise undergraduate introduction to fundamentals of topology — clearly and engagingly written, and filled with stimulating, imaginative exercises. Topics include set theory, metric and topological spaces, connectedness, and compactness. 1975 edition. |
a course in point set topology: Introduction to Topological Manifolds John M. Lee, 2006-04-06 This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of di?erential geometry, algebraic topology, and related ?elds. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. Here at the University of Washington, for example, this text is used for the ?rst third of a year-long course on the geometry and topology of manifolds; the remaining two-thirds focuses on smooth manifolds. Therearemanysuperbtextsongeneralandalgebraictopologyavailable. Why add another one to the catalog? The answer lies in my particular visionofgraduateeducation—itismy(admittedlybiased)beliefthatevery serious student of mathematics needs to know manifolds intimately, in the same way that most students come to know the integers, the real numbers, Euclidean spaces, groups, rings, and ?elds. Manifolds play a role in nearly every major branch of mathematics (as I illustrate in Chapter 1), and specialists in many ?elds ?nd themselves using concepts and terminology fromtopologyandmanifoldtheoryonadailybasis. Manifoldsarethuspart of the basic vocabulary of mathematics, and need to be part of the basic graduate education. The ?rst steps must be topological, and are embodied in this book; in most cases, they should be complemented by material on smooth manifolds, vector ?elds, di?erential forms, and the like. (After all, few of the really interesting applications of manifold theory are possible without using tools from calculus. |
a course in point set topology: A Basic Course in Algebraic Topology William S. Massey, 2019-06-28 This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date. |
a course in point set topology: Lecture Notes on Elementary Topology and Geometry I.M. Singer, J.A. Thorpe, 2015-05-28 At the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis. |
a course in point set topology: Introduction to Piecewise-Linear Topology Colin P. Rourke, B.J. Sanderson, 2012-12-06 The first five chapters of this book form an introductory course in piece wise-linear topology in which no assumptions are made other than basic topological notions. This course would be suitable as a second course in topology with a geometric flavour, to follow a first course in point-set topology, andi)erhaps to be given as a final year undergraduate course. The whole book gives an account of handle theory in a piecewise linear setting and could be the basis of a first year postgraduate lecture or reading course. Some results from algebraic topology are needed for handle theory and these are collected in an appendix. In a second appen dix are listed the properties of Whitehead torsion which are used in the s-cobordism theorem. These appendices should enable a reader with only basic knowledge to complete the book. The book is also intended to form an introduction to modern geo metric topology as a research subject, a bibliography of research papers being included. We have omittedacknowledgements and references from the main text and have collected these in a set of historical notes to be found after the appendices. |
a course in point set topology: Essential Topology Martin D. Crossley, 2011-02-11 This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra. |
a course in point set topology: Set Theory and Metric Spaces Irving Kaplansky, 2001 This is a book that could profitably be read by many graduate students or by seniors in strong major programs ... has a number of good features. There are many informal comments scattered between the formal development of theorems and these are done in a light and pleasant style. ... There is a complete proof of the equivalence of the axiom of choice, Zorn's Lemma, and well-ordering, as well as a discussion of the use of these concepts. There is also an interesting discussion of the continuum problem ... The presentation of metric spaces before topological spaces ... should be welcomed by most students, since metric spaces are much closer to the ideas of Euclidean spaces with which they are already familiar. --Canadian Mathematical Bulletin Kaplansky has a well-deserved reputation for his expository talents. The selection of topics is excellent. -- Lance Small, UC San Diego This book is based on notes from a course on set theory and metric spaces taught by Edwin Spanier, and also incorporates with his permission numerous exercises from those notes. The volume includes an Appendix that helps bridge the gap between metric and topological spaces, a Selected Bibliography, and an Index. |
a course in point set topology: Topology and Geometry Glen E. Bredon, 2014-09-01 |
a course in point set topology: A Concise Course in Algebraic Topology J. Peter May, 2019 |
a course in point set topology: Topology Donald W. Kahn, 1995 Comprehensive coverage of elementary general topology as well as algebraic topology, specifically 2-manifolds, covering spaces and fundamental groups. Problems, with selected solutions. Bibliography. 1975 edition. |
a course in point set topology: Basic Topology Mark Anthony Armstrong, 1990 |
a course in point set topology: Studies in Topology Nick M. Stavrakas, Keith R. Allen, 1975 |
Engage Students Through Discussion | Digital Learning Services
Once you’ve decided on the strategy for your post, identify your argument and layout the ways that you will support it, both by providing evidence that supports your strategy and evidence that …
Service Catalog | Digital Learning Services
Course Design Tools provides instructors with resources to develop pedagogically sound remote courses. This service includes the DLS Core Template, developed by Digital Learning Services …
Engage Students Through Discussion | Digital Learning …
Once you’ve decided on the strategy for your post, identify your argument and layout the ways that you will support it, both by providing evidence that supports your strategy and evidence …
Service Catalog | Digital Learning Services
Course Design Tools provides instructors with resources to develop pedagogically sound remote courses. This service includes the DLS Core Template, developed by Digital …