Advertisement
a brief course in mathematical statistics ebook: All of Statistics Larry Wasserman, 2004-09-17 This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. |
a brief course in mathematical statistics ebook: A Course in Mathematical Statistics and Large Sample Theory Rabi Bhattacharya, Lizhen Lin, Victor Patrangenaru, 2016-08-13 This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods. |
a brief course in mathematical statistics ebook: A Brief Course in Mathematical Statistics Elliot A. Tanis, 2008 |
a brief course in mathematical statistics ebook: A Modern Introduction to Probability and Statistics F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, 2006-03-30 Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. |
a brief course in mathematical statistics ebook: Fundamentals of Mathematical Statistics S.C. Gupta, V.K. Kapoor, 2020-09-10 Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others |
a brief course in mathematical statistics ebook: A Course in Mathematical Statistics George G. Roussas, 1997-02-28 A Course in Mathematical Statistics, Second Edition, contains enough material for a year-long course in probability and statistics for advanced undergraduate or first-year graduate students, or it can be used independently for a one-semester (or even one-quarter) course in probability alone. It bridges the gap between high and intermediate level texts so students without a sophisticated mathematical background can assimilate a fairly broad spectrum of the theorems and results from mathematical statistics. The coverage is extensive, and consists of probability and distribution theory, and statistical inference. * Contains 25% new material * Includes the most complete coverage of sufficiency * Transformation of Random Vectors * Sufficiency / Completeness / Exponential Families * Order Statistics * Elements of Nonparametric Density Estimation * Analysis of Variance (ANOVA) * Regression Analysis * Linear Models |
a brief course in mathematical statistics ebook: Mathematical Statistics Jun Shao, 2008-02-03 This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Chapters 3-7 contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results. In addition to improving the presentation, the new edition makes Chapter 1 a self-contained chapter for probability theory with emphasis in statistics. Added topics include useful moment inequalities, more discussions of moment generating and characteristic functions, conditional independence, Markov chains, martingales, Edgeworth and Cornish-Fisher expansions, and proofs to many key theorems such as the dominated convergence theorem, monotone convergence theorem, uniqueness theorem, continuity theorem, law of large numbers, and central limit theorem. A new section in Chapter 5 introduces semiparametric models, and a number of new exercises were added to each chapter. |
a brief course in mathematical statistics ebook: Stat Labs Deborah Nolan, Terry P. Speed, 2006-05-02 Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students. |
a brief course in mathematical statistics ebook: Modern Mathematical Statistics with Applications Jay L. Devore, Kenneth N. Berk, 2011-12-07 Modern Mathematical Statistics with Applications, Second Edition strikes a balance between mathematical foundations and statistical practice. In keeping with the recommendation that every math student should study statistics and probability with an emphasis on data analysis, accomplished authors Jay Devore and Kenneth Berk make statistical concepts and methods clear and relevant through careful explanations and a broad range of applications involving real data. The main focus of the book is on presenting and illustrating methods of inferential statistics that are useful in research. It begins with a chapter on descriptive statistics that immediately exposes the reader to real data. The next six chapters develop the probability material that bridges the gap between descriptive and inferential statistics. Point estimation, inferences based on statistical intervals, and hypothesis testing are then introduced in the next three chapters. The remainder of the book explores the use of this methodology in a variety of more complex settings. This edition includes a plethora of new exercises, a number of which are similar to what would be encountered on the actuarial exams that cover probability and statistics. Representative applications include investigating whether the average tip percentage in a particular restaurant exceeds the standard 15%, considering whether the flavor and aroma of Champagne are affected by bottle temperature or type of pour, modeling the relationship between college graduation rate and average SAT score, and assessing the likelihood of O-ring failure in space shuttle launches as related to launch temperature. |
a brief course in mathematical statistics ebook: Mathematical Statistics Dieter Rasch, Dieter Schott, 2018-01-09 Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics. |
a brief course in mathematical statistics ebook: Fundamentals of Mathematical Statistics Hung T. Nguyen, Gerald S. Rogers, 2012-12-06 This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are interesting but not essential (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also INE. We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial. |
a brief course in mathematical statistics ebook: A Course in Large Sample Theory Thomas S. Ferguson, 2017-09-06 A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study. |
a brief course in mathematical statistics ebook: Mathematical Statistics with Applications in R Kandethody M. Ramachandran, Chris P. Tsokos, 2018-11-13 Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students. Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. Step-by-step procedure to solve real problems, making the topic more accessible Exercises blend theory and modern applications Practical, real-world chapter projects Provides an optional section in each chapter on using Minitab, SPSS and SAS commands Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods |
a brief course in mathematical statistics ebook: Theoretical Statistics Robert W. Keener, 2010-09-08 Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix. |
a brief course in mathematical statistics ebook: Online Statistics Education David M Lane, 2014-12-02 Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University. |
a brief course in mathematical statistics ebook: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2010-03-01 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor to the course, incorporating the computer and offering an integrated approach to inference that includes the frequency approach and the Bayesian inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout. Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. The new edition includes a number of features designed to make the material more accessible and level-appropriate to the students taking this course today. |
a brief course in mathematical statistics ebook: Mathematical Statistics Richard J. Rossi, 2018-06-14 Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference. |
a brief course in mathematical statistics ebook: Mathematical Statistics Peter J. Bickel, Kjell A. Doksum, 2015-11-04 Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o |
a brief course in mathematical statistics ebook: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
a brief course in mathematical statistics ebook: Foundations and Applications of Statistics Randall Pruim, 2018-04-04 Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required. |
a brief course in mathematical statistics ebook: Introduction to the Mathematical and Statistical Foundations of Econometrics Herman J. Bierens, 2004-12-20 This book is intended for use in a rigorous introductory PhD level course in econometrics. |
a brief course in mathematical statistics ebook: Examples and Problems in Mathematical Statistics Shelemyahu Zacks, 2014-02-18 Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers. |
a brief course in mathematical statistics ebook: Mathematical Statistics for Economics and Business Ron C. Mittelhammer, 2015-04-02 Mathematical Statistics for Economics and Business, Second Edition, provides a comprehensive introduction to the principles of mathematical statistics which underpin statistical analyses in the fields of economics, business, and econometrics. The selection of topics in this textbook is designed to provide students with a conceptual foundation that will facilitate a substantial understanding of statistical applications in these subjects. This new edition has been updated throughout and now also includes a downloadable Student Answer Manual containing detailed solutions to half of the over 300 end-of-chapter problems. After introducing the concepts of probability, random variables, and probability density functions, the author develops the key concepts of mathematical statistics, most notably: expectation, sampling, asymptotics, and the main families of distributions. The latter half of the book is then devoted to the theories of estimation and hypothesis testing with associated examples and problems that indicate their wide applicability in economics and business. Features of the new edition include: a reorganization of topic flow and presentation to facilitate reading and understanding; inclusion of additional topics of relevance to statistics and econometric applications; a more streamlined and simple-to-understand notation for multiple integration and multiple summation over general sets or vector arguments; updated examples; new end-of-chapter problems; a solution manual for students; a comprehensive answer manual for instructors; and a theorem and definition map. This book has evolved from numerous graduate courses in mathematical statistics and econometrics taught by the author, and will be ideal for students beginning graduate study as well as for advanced undergraduates. |
a brief course in mathematical statistics ebook: OpenIntro Statistics David Diez, Christopher Barr, Mine Çetinkaya-Rundel, 2015-07-02 The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources. |
a brief course in mathematical statistics ebook: Lectures on the Poisson Process Günter Last, Mathew Penrose, 2017-10-26 A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry. |
a brief course in mathematical statistics ebook: A Graduate Course in Probability Howard G. Tucker, 2014-06-27 Probability and Mathematical Statistics: A Series of Monographs and Textbooks: A Graduate Course in Probability presents some of the basic theorems of analytic probability theory in a cohesive manner. This book discusses the probability spaces and distributions, stochastic independence, basic limiting operations, and strong limit theorems for independent random variables. The central limit theorem, conditional expectation and martingale theory, and Brownian motion are also elaborated. The prerequisite for this text is knowledge of real analysis or measure theory, particularly the Lebesgue dominated convergence theorem, Fubini's theorem, Radon-Nikodym theorem, Egorov's theorem, monotone convergence theorem, and theorem on unique extension of a sigma-finite measure from an algebra to the sigma-algebra generated by it. This publication is suitable for a one-year graduate course in probability given in a mathematics program and preferably for students in their second year of graduate work. |
a brief course in mathematical statistics ebook: Introduction to Mathematical Statistical Physics Robert Adolʹfovich Minlos, 2000 This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: regular (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and singular (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis. |
a brief course in mathematical statistics ebook: Mathematical Statistics Peter J. Bickel, Kjell A. Doksum, 2015 This second volume focuses on inference in non- and semiparametric models, including topics in machine learning. It not only reexamines the procedures introduced in the authors' first volume from a more sophisticated point of view but also addresses new problems originating from the analysis of estimation of functions and other complex decision procedures and large-scale data analysis. Numerous examples and problems illustrate statistical modeling and inference concepts. Measure theory is not required for understanding. |
a brief course in mathematical statistics ebook: Mathematical Statistics and Data Analysis John A. Rice, 2007 This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. |
a brief course in mathematical statistics ebook: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning. |
a brief course in mathematical statistics ebook: Core Statistics Simon N. Wood, 2015-04-13 Core Statistics is a compact starter course on the theory, models, and computational tools needed to make informed use of powerful statistical methods. |
a brief course in mathematical statistics ebook: Probability: A Graduate Course Allan Gut, 2006-03-16 I know it's trivial, but I have forgotten why. This is a slightly exaggerated characterization of the unfortunate attitude of many mathematicians toward the surrounding world. The point of departure of this book is the opposite. This textbook on the theory of probability is aimed at graduate students, with the ideology that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to chapters on inequalities, characteristic functions, convergence, followed by the three main subjects, the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales. The main feature of this book is the combination of rigor and detail. Instead of being sketchy and leaving lots of technicalities to be filled in by the reader or as easy exercises, a more solid foundation is obtained by providing more of those not so trivial matters and by integrating some of those not so simple exercises and problems into the body of text. Some results have been given more than one proof in order to illustrate the pros and cons of different approaches. On occasion we invite the reader to minor extensions, for which the proofs reduce to minor modifications of existing ones, with the aim of creating an atmosphere of a dialogue with the reader (instead of the more typical monologue), in order to put the reader in the position to approach any other text for which a solid probabilistic foundation is necessary. Allan Gut is a professor of Mathematical Statistics at Uppsala University, Uppsala, Sweden. He is the author of the Springer monograph Stopped Random Walks (1988), the Springer textbook An Intermediate Course in Probability (1995), and has published around 60 articles in probability theory. His interest in attracting amore general audience to the beautiful world of probability has been manifested in his Swedish popular science book Sant eller Sannolikt (True or Probable), Norstedts förlag (2002). From the reviews: This is more substantial than the usual graduate course in probability; it contains many useful and interesting details that previously were scattered around the literature and gives clear evidence that the writer has a great deal of experience in the area. Short Book Reviews of the International Statistical Institute, December 2005 ...This book is a readable, comprehensive, and up-to-date introductory textbook to probability theory with emphasis on limit theorems for sums and extremes of random variables. The purchase is worth its price. Journal of the American Statistical Association, June 2006 |
a brief course in mathematical statistics ebook: 40 Puzzles and Problems in Probability and Mathematical Statistics Wolf Schwarz, 2007-11-25 This book is based on the view that cognitive skills are best acquired by solving challenging, non-standard probability problems. Many puzzles and problems presented here are either new within a problem solving context (although as topics in fundamental research they are long known) or are variations of classical problems which follow directly from elementary concepts. A small number of particularly instructive problems is taken from previous sources which in this case are generally given. This book will be a handy resource for professors looking for problems to assign, for undergraduate math students, and for a more general audience of amateur scientists. |
a brief course in mathematical statistics ebook: Statistics for High-Dimensional Data Peter Bühlmann, Sara van de Geer, 2011-06-08 Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science. |
a brief course in mathematical statistics ebook: Mathematical Statistics Keith Knight, 1999-11-24 Traditional texts in mathematical statistics can seem - to some readers-heavily weighted with optimality theory of the various flavors developed in the 1940s and50s, and not particularly relevant to statistical practice. Mathematical Statistics stands apart from these treatments. While mathematically rigorous, its focus is on providing a set of useful tools that allow students to understand the theoretical underpinnings of statistical methodology. The author concentrates on inferential procedures within the framework of parametric models, but - acknowledging that models are often incorrectly specified - he also views estimation from a non-parametric perspective. Overall, Mathematical Statistics places greater emphasis on frequentist methodology than on Bayesian, but claims no particular superiority for that approach. It does emphasize, however, the utility of statistical and mathematical software packages, and includes several sections addressing computational issues. The result reaches beyond nice mathematics to provide a balanced, practical text that brings life and relevance to a subject so often perceived as irrelevant and dry. |
a brief course in mathematical statistics ebook: Introduction to Probability with Statistical Applications Géza Schay, 2016-06-17 Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed. (Sophie Lemaire, Mathematical Reviews, Issue 2008 m) |
a brief course in mathematical statistics ebook: A Course on Statistics for Finance Stanley L. Sclove, 2012-12-06 Taking a data-driven approach, A Course on Statistics for Finance presents statistical methods for financial investment analysis. The author introduces regression analysis, time series analysis, and multivariate analysis step by step using models and methods from finance. The book begins with a review of basic statistics, including descriptive statistics, kinds of variables, and types of data sets. It then discusses regression analysis in general terms and in terms of financial investment models, such as the capital asset pricing model and the Fama/French model. It also describes mean-variance portfolio analysis and concludes with a focus on time series analysis. Providing the connection between elementary statistics courses and quantitative finance courses, this text helps both existing and future quants improve their data analysis skills and better understand the modeling process. |
a brief course in mathematical statistics ebook: Mathematical Statistics for Applied Econometrics Charles B Moss, 2014-10-16 An Introductory Econometrics Text Mathematical Statistics for Applied Econometrics covers the basics of statistical inference in support of a subsequent course on classical econometrics. The book shows students how mathematical statistics concepts form the basis of econometric formulations. It also helps them think about statistics as more than a toolbox of techniques. Uses Computer Systems to Simplify Computation The text explores the unifying themes involved in quantifying sample information to make inferences. After developing the necessary probability theory, it presents the concepts of estimation, such as convergence, point estimators, confidence intervals, and hypothesis tests. The text then shifts from a general development of mathematical statistics to focus on applications particularly popular in economics. It delves into matrix analysis, linear models, and nonlinear econometric techniques. Students Understand the Reasons for the Results Avoiding a cookbook approach to econometrics, this textbook develops students’ theoretical understanding of statistical tools and econometric applications. It provides them with the foundation for further econometric studies. |
a brief course in mathematical statistics ebook: Statistics David W. Scott, 2020-07-13 Statistic: A Concise Mathematical Introduction for Students and Scientists offers a one academic term text that prepares the student to broaden their skills in statistics, probability and inference, prior to selecting their follow-on courses in their chosen fields, whether it be engineering, computer science, programming, data sciences, business or economics. The book places focus early on continuous measurements, as well as discrete random variables. By invoking simple and intuitive models and geometric probability, discrete and continuous experiments and probabilities are discussed throughout the book in a natural way. Classical probability, random variables, and inference are discussed, as well as material on understanding data and topics of special interest. Topics discussed include: • Classical equally likely outcomes • Variety of models of discrete and continuous probability laws • Likelihood function and ratio • Inference • Bayesian statistics With the growth in the volume of data generated in many disciplines that is enabling the growth in data science, companies now demand statistically literate scientists and this textbook is the answer, suited for undergraduates studying science or engineering, be it computer science, economics, life sciences, environmental, business, amongst many others. Basic knowledge of bivariate calculus, R language, Matematica and JMP is useful, however there is an accompanying website including sample R and Mathematica code to help instructors and students. |
a brief course in mathematical statistics ebook: Introduction to Probability Charles Miller Grinstead, James Laurie Snell, 2012-10-30 This text is designed for an introductory probability course at the university level for sophomores, juniors, and seniors in mathematics, physical and social sciences, engineering, and computer science. It presents a thorough treatment of ideas and techniques necessary for a firm understanding of the subject. |
BRIEF Definition & Meaning - Merriam-Webster
The meaning of BRIEF is short in duration, extent, or length. How to use brief in a sentence.
BRIEF | English meaning - Cambridge Dictionary
BRIEF definition: 1. lasting only a short time or containing few words: 2. used to express how quickly time goes…. Learn more.
Brief scrap crossword clue - LATSolver.com
1 day ago · While searching our database we found 1 possible solution for the: Brief scrap crossword clue. This crossword clue was last seen on June 15 2025 LA Times Crossword …
Brief - Definition, Meaning & Synonyms | Vocabulary.com
Something brief is short and to the point. If you make a brief visit, you don't stay long. If you make a brief statement, you use few words. If you wear brief shorts, you are showing a little too …
Brief - definition of brief by The Free Dictionary
1. short in duration: a brief holiday. 2. short in length or extent; scanty: a brief bikini. 3. abrupt in manner; brusque: the professor was brief with me this morning. 4. terse or concise; containing …
BRIEF definition and meaning | Collins English Dictionary
A brief speech or piece of writing does not contain too many words or details. In a brief statement, he concentrated entirely on international affairs. Write a very brief description of a typical …
brief adjective - Definition, pictures, pronunciation and ...
Definition of brief adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Brief vs. Debrief – What’s the Difference? - Writing Explained
As a noun, brief means a summary or short statement. “Did everyone read the brief I sent out via email?” asked the manager. As a verb , brief means to prepare someone by informing him or …
What does brief mean? - Definitions.net
What does brief mean? This dictionary definitions page includes all the possible meanings, example usage and translations of the word brief. An attorney's legal argument in written form …
brief - definition and meaning - Wordnik
Apr 8, 2014 · adjective Short in time, duration, length, or extent. adjective Succinct; concise. adjective Curt; abrupt. noun A short, succinct statement. noun A condensation or an abstract …
BRIEF Definition & Meaning - Merriam-Webster
The meaning of BRIEF is short in duration, extent, or length. How to use brief in a sentence.
BRIEF | English meaning - Cambridge Dictionary
BRIEF definition: 1. lasting only a short time or containing few words: 2. used to express how quickly time goes…. Learn more.
Brief scrap crossword clue - LATSolver.com
1 day ago · While searching our database we found 1 possible solution for the: Brief scrap crossword clue. This crossword clue was last seen on June 15 2025 LA Times Crossword …
Brief - Definition, Meaning & Synonyms | Vocabulary.com
Something brief is short and to the point. If you make a brief visit, you don't stay long. If you make a brief statement, you use few words. If you wear brief shorts, you are showing a little too …
Brief - definition of brief by The Free Dictionary
1. short in duration: a brief holiday. 2. short in length or extent; scanty: a brief bikini. 3. abrupt in manner; brusque: the professor was brief with me this morning. 4. terse or concise; containing …
BRIEF definition and meaning | Collins English Dictionary
A brief speech or piece of writing does not contain too many words or details. In a brief statement, he concentrated entirely on international affairs. Write a very brief description of a typical …
brief adjective - Definition, pictures, pronunciation and ...
Definition of brief adjective in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Brief vs. Debrief – What’s the Difference? - Writing Explained
As a noun, brief means a summary or short statement. “Did everyone read the brief I sent out via email?” asked the manager. As a verb , brief means to prepare someone by informing him or …
What does brief mean? - Definitions.net
What does brief mean? This dictionary definitions page includes all the possible meanings, example usage and translations of the word brief. An attorney's legal argument in written form …
brief - definition and meaning - Wordnik
Apr 8, 2014 · adjective Short in time, duration, length, or extent. adjective Succinct; concise. adjective Curt; abrupt. noun A short, succinct statement. noun A condensation or an abstract …